OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 8 — Aug. 1, 2003
  • pp: 1769–1779

Influence of higher Coulomb correlations on optical coherent-control signals from a ZnSe quantum well

Hans Georg Breunig, Tobias Voss, Ilja Rückmann, Jürgen Gutowski, Vollrath Martin Axt, and Tilmann Kuhn  »View Author Affiliations


JOSA B, Vol. 20, Issue 8, pp. 1769-1779 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001769


View Full Text Article

Acrobat PDF (609 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The manipulation of the coherent optical polarization in a quantum well with a pair of phase-locked laser pulses is investigated by using wave-mixing signals. The measurements are performed in four- and six-wave-mixing geometries with different polarization states of the excitation pulses. Even at moderate excitation densities, the signals are modulated by higher harmonics that correspond to high-order optical nonlinearities. A significant effect of higher Coulomb correlations on the coherent-control signals is demonstrated by comparing the experiments with calculations based on a microscopic density-matrix theory. The theoretical approach makes use of the dynamics-controlled truncation scheme. The corresponding numerical results are in good agreement with the experiment.

© 2003 Optical Society of America

OCIS Codes
(320.7120) Ultrafast optics : Ultrafast phenomena
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

Citation
Hans Georg Breunig, Tobias Voss, Ilja Rückmann, Jürgen Gutowski, Vollrath Martin Axt, and Tilmann Kuhn, "Influence of higher Coulomb correlations on optical coherent-control signals from a ZnSe quantum well," J. Opt. Soc. Am. B 20, 1769-1779 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-8-1769


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1993).
  2. J. J. Baumberg, A. P. Heberle, K. Köhler, and K. Ploog, “Ultrafast coherent carrier control in quantum wells,” J. Opt. Soc. Am. B 13, 1246–1252 (1996).
  3. H. Petek, A. P. Heberle, W. Nessler, H. Nagano, S. Kubota, S. Matsunami, N. Moriya, and S. Ogawa, “Optical phase control of coherent electron dynamics in metals,” Phys. Rev. Lett. 79, 4649–4652 (1997).
  4. A. Hache, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78, 306–309 (1997).
  5. R. N. Zare, “Laser control of chemical reactions,” Science 279, 1875–1879 (1998).
  6. A. W. Albrecht, J. D. Hybl, S. M. G. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999), and references therein.
  7. H. M. van Driel, “Coherence control of currents in semiconductors: a material perspective,” Chem. Phys. Lett. 251, 309–318 (2000).
  8. S. P. Kennedy, N. Garro, and R. T. Phillips, “Coherent control of optical emission from a conjugated polymer,” Phys. Rev. Lett. 86, 4148–4151 (2001).
  9. P. C. M. Planken, I. Brener, M. C. Nuss, M. S. C. Luo, and S. L. Chuang, “Coherent control of terahertz charge oscillations in a coupled quantum well using phase-locked optical pulses,” Phys. Rev. B 48, 4903–4906 (1993).
  10. A. P. Heberle, J. J. Baumberg, and K. Köhler, “Ultrafast coherent control and destruction of excitons in quantum wells,” Phys. Rev. Lett. 75, 2598–2601 (1995).
  11. M. U. Wehner, M. H. Ulm, D. S. Chemla, and M. Wegener, “Coherent control of electron-LO-phonon scattering in bulk GaAs,” Phys. Rev. Lett. 80, 1992–1995 (1998).
  12. D. Steinbach, G. Kocherscheidt, M. U. Wehner, H. Kalt, M. Wegener, K. Ohkawa, D. Hommel, and V. M. Axt, “Electron-phonon quantum kinetics in the strong coupling regime,” Phys. Rev. B 60, 12079–12090 (1999).
  13. X. Marie, P. Renucci, S. Dubourg, T. Amand, P. Le Jeune, J. Barrau, J. Bloch, and R. Planel, “Coherent control of exciton polaritons in a semiconductor microcavity,” Phys. Rev. B 59, R2494–R2497 (1999).
  14. U. Woggon, F. Gindele, W. Langbein, and J. M. Hvam, “Quantum kinetic exciton-LO-phonon interaction in CdSe,” Phys. Rev. B 61, 1935–1940 (2000).
  15. D. S. Yee, K. J. Yee, S. C. Hohng, D. S. Kim, T. Meier, and S. W. Koch, “Coherent control of absorption and polarization decay in a GaAs quantum well: time and spectral domain studies,” Phys. Rev. Lett. 84, 3474–3477 (2000).
  16. M. Wegener and D. S. Chemla, “Coherent control of electron-phonon quantum kinetics: exploring the weak and the strong coupling regime,” Chem. Phys. 251, 269–282 (2000).
  17. Y.-S. Lee, T. B. Norris, J. Prineas, G. Khitrova, and H. M. Gibbs, “Nondegenerate coherent control of polariton modes in a quantum-well semiconductor microcavity,” Phys. Status Solidi B 221, 121–126 (2000).
  18. N. Garro, S. P. Kennedy, A. P. Heberle, and R. T. Phillips, “Coherent control of two-photon transitions,” Phys. Status Solidi B 221, 385–389 (2000).
  19. P. Renucci, M. Pillard, X. Marie, T. Amand, J. Barrau, and C. Ciuti, “Temporal coherent control in semiconductor quantum structures,” Phys. Status Solidi A 178, 373–379 (2000).
  20. M. S. C. Luo, S. L. Chuang, P. C. M. Planken, I. Brener, and M. C. Nuss, “Coherent double-pulse control of quantum beats in a coupled quantum well,” Phys. Rev. B 48, 11043–11050 (1993).
  21. X. Marie, P. Le Jeune, T. Amand, M. Brousseau, J. Barrau, M. Paillard, and R. Planel, “Coherent control of optical orientation of excitons in quantum wells,” Phys. Rev. Lett. 79, 3222–3225 (1997).
  22. W. Pötz, “Coherent control of light absorption and carrier dynamics in semiconductor nanostructures,” Phys. Rev. Lett. 79, 3262–3265 (1997).
  23. W. Pötz, “Coherent control of terahertz radiation from semiconductor nanostructures,” Appl. Phys. Lett. 72, 3002–3004 (1998).
  24. T. Kuhn, V. M. Axt, M. Herbst, and E. Binder, in Coherent Control in Atoms, Molecules and Semiconductors, W. Pötz and W. A. Schroeder, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1999), pp. 113–126.
  25. H. Castella and R. Zimmermann, “Coherent control for a two-lever system coupled to phonons,” Phys. Rev. B 59, R7801–R7804 (1999).
  26. K. Komori, T. Sugaya, M. Watanabe, and T. Hidaka, “Ultrafast coherent control of excitons using pulse-shaping technique,” Jpn. J. Appl. Phys. 39, 2347–2352 (2000).
  27. U. Özgür, C.-W. Lee, and H. O. Everitt, “Coherent control of optical phonons in semiconductor quantum wells,” Phys. Rev. Lett. 86, 5604–5607 (2001).
  28. J. Erland, V. G. Lyssenko, and J. M. Hvam, “Optical coherent control in semiconductors: fringe contrast and inhomogeneous broadening,” Phys. Rev. B 63, 155317 (2001).
  29. J. M. Kikkawa and D. D. Awschalom, “All-optical magnetic resonance in semiconductors,” Science 287, 473–476 (2000).
  30. G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Optically induced entanglement of excitons in a single quantum dot,” Science 289, 1906–1909 (2000).
  31. M. U. Wehner, J. Hetzler, and M. Wegener, “Interferometric four-wave-mixing spectroscopy on bulk GaAs,” Phys. Rev. B 55, 4031–4034 (1997).
  32. Y. Mitsumori, T. Kuroda, and F. Minami, “Manipulation of 2P excitonic wave function in ZnSe,” J. Lumin. 87–89, 914–916 (2000).
  33. H. G. Breunig, T. Voss, I. Rückmann, and J. Gutowski, “Coherent control of biexcitonic polarization,” Phys. Rev. B 66, 193302 (2002).
  34. T. Voss, H. G. Breunig, I. Rückmann, J. Gutowski, V. M. Axt, and T. Kuhn, “Biexcitonic effects in the coherent control of the excitonic polarization detected in six-wave-mixing signals,” Phys. Rev. B 66, 155301 (2002).
  35. H. G. Breunig, T. Trüper, I. Rückmann, J. Gutowski, and F. Jahnke, “Evidence of density-dependent dephasing in interferometric four-wave-mixing experiments on heavy-hole excitons in ZnSe quantum wells,” Physica B 314, 283–287 (2002).
  36. H. G. Breunig, T. Trüper, I. Rückmann, J. Gutowski, and F. Jahnke, “Interferometric four-wave-mixing experiments on ZnSe quantum-well structures,” Phys. Status Solidi B 229, 621–625 (2001).
  37. B. Haase, U. Neukirch, J. Gutowski, G. Bartels, A. Stahl, J. Nürnberger, and W. Faschinger, “Coherent dynamics of excitons and biexcitons: polarization and intensity dependence,” Phys. Status Solidi B 206, 363–368 (1998).
  38. V. M. Axt, B. Haase, and U. Neukirch, “Influence of two-pair continuum correlations following resonant excitation of excitons,” Phys. Rev. Lett. 86, 4620–4623 (2001).
  39. S. R. Bolton, U. Neukirch, L. J. Sham, D. S. Chemla, and V. M. Axt, “Demonstration of sixth-order coulomb correlations in a semiconductor single quantum well,” Phys. Rev. Lett. 85, 2002–2005 (2000).
  40. V. M. Axt, S. R. Bolton, U. Neukirch, L. J. Sham, and D. S. Chemla, “Evidence of six-particle Coulomb correlations insix-wave-mixing signals from a semiconductor quantum well,” Phys. Rev. B 63, 115303 (2001).
  41. B. Haase, U. Neukirch, J. Gutowski, G. Bartels, A. Stahl, V. M. Axt, J. Nürnberger, and W. Faschinger, “Manifestation of exciton-amplitude fluctuations in the transient polarization state of four-wave-mixing signals,” Phys. Rev. B 59, R7805–R7808 (1999).
  42. J. J. Baumberg, Coherent Control and Switching (Institute of Physics, London, 1998), Chap. 3, pp. 95–120.
  43. B. Haase, U. Neukirch, J. Meinertz, J. Gutowski, V. M. Axt, G. Bartels, A. Stahl, J. Nürnberger, and W. Faschinger, “Intensity dependence of signals obtained in four-wave-mixing geometry: influence of higher order contributions,” J. Cryst. Growth 214, 852–861 (2000).
  44. V. M. Axt and A. Stahl, “A dynamics-controlled truncation scheme for the hierarchy of density matrices in semiconductor optics,” Z. Phys. B 93, 195–204 (1994).
  45. V. M. Axt and S. Mukamel, “Nonlinear optics of semiconductor and molecular nanostructures; a common perspective,” Rev. Mod. Phys. 70, 145–174 (1998).
  46. H. Haug and S. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 3rd ed. (World Scientific, Singapore, 1995).
  47. H. Wang, K. B. Ferrio, D. G. Steel, P. R. Berman, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient four-wave-mixing line shapes: effects of excitation-induced dephasing,” Phys. Rev. A 49, R1551–R1554 (1994).
  48. Y. Z. Hu, R. Binder, S. W. Koch, S. T. Cundiff, H. Wang, and D. G. Steel, “Excitation and polarization effects in semiconductor four-wave-mixing spectroscopy,” Phys. Rev. B 49, 14382–14386 (1994).
  49. A. J. Fischer, D. S. Kim, J. Hays, W. Shan, D. B. Eason, J. Ren, J. F. Furdyna, Z. Q. Zhu, T. Yao, J. F. Klem, and W. Schäfer, “Femtosecond coherent spectroscopy of bulk ZnSe and ZnCdSe/ZnSe quantum wells,” Phys. Rev. Lett. 73, 2368–2371 (1994).
  50. V. M. Axt, K. Victor, and T. Kuhn, “The exciton-exciton continuum and its contribution to four-wave mixing signals,” Phys. Status Solidi B 206, 189–196 (1998).
  51. T. Östreich, K. Schönhammer, and L. J. Sham, “Theory of exciton-exciton correlation in nonlinear optical response,” Phys. Rev. B 58, 12920–12936 (1998).
  52. N. H. Kwong, R. Takayama, I. Rumyantsev, M. Kuwata-Gonokami, and R. Binder, “Evidence of nonperturbative continuum correlations in two-dimensional exciton systems in semiconductor microcavities,” Phys. Rev. Lett. 87, 027402 (2001).
  53. N. H. Kwong, R. Takayama, I. Rumyantsev, M. Kuwata-Gonokami, and R. Binder, “Third-order exciton-correlation and nonlinear cavity-polariton effects in semiconductor microcavities,” Phys. Rev. B 64, 045316 (2001).
  54. M. Z. Maialle and L. J. Sham, “Interacting electron theory of coherent nonlinear response,” Phys. Rev. Lett. 73, 3310–3313 (1994).
  55. G. Bartels, G. C. Cho, T. Dekorsy, H. Kurz, A. Stahl, and K. Köhler, “Coherent signature of differential transmission signals in semiconductors: theory and experiment,” Phys. Rev. B 55, 16404–16413 (1997).
  56. P. Kner, S. Bar-Ad, M. V. Marquezini, D. S. Chemla, and W. Schäfer, “Magnetically enhanced exciton-exciton correlations in semiconductors,” Phys. Rev. Lett. 78, 1319–1322 (1997).
  57. C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hubner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82, 3112–3115 (1999).
  58. U. Hohenester, F. Rossi, and E. Molinari, “Excitonic and biexcitonic effects in the coherent optical response of semiconductor quantum dots,” Physica B 272, 1–4 (1999).
  59. G. Bartels, A. Stahl, V. M. Axt, B. Haase, U. Neukirch, and J. Gutowski, “Identification of higher-order electronic coherences in semiconductors by their signature in four-wave-mixing signals,” Phys. Rev. Lett. 81, 5880–5883 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited