OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 9 — Sep. 1, 2003
  • pp: 1838–1843

Optical properties of perfluorocyclobutyl polymers

John Ballato, Stephen Foulger, and Dennis W. Smith, Jr.  »View Author Affiliations

JOSA B, Vol. 20, Issue 9, pp. 1838-1843 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As the interest in utilizing fluoropolymers in a greater number of value-added photonic applications continues to grow, so does the necessity for accurate and broadband characterization of their optical properties. This paper provides the canonical optical properties of the refractive index and the extinction coefficient for two perfluorocyclobutyl-based polymers over the spectral range from approximately 0.13 μm to 33 μm, including their respective Sellmeier coefficients. In addition, the data are used to compare Sellmeier versus Cauchy fits to dispersion data in order to elucidate the potential pitfalls in computing system-level design criterion, such as bandwidth.

© 2003 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(160.0160) Materials : Materials
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(160.4890) Materials : Organic materials
(160.5470) Materials : Polymers
(160.6840) Materials : Thermo-optical materials

John Ballato, Stephen Foulger, and Dennis W. Smith, Jr., "Optical properties of perfluorocyclobutyl polymers," J. Opt. Soc. Am. B 20, 1838-1843 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Resnick and W. Buck, in Modern Fluoropolymers, J. Scheirs, ed. (Wiley, New York, 1997), Chap. 22, pp. 397–419.
  2. N. Sugiyama, in Modern Fluoropolymers, J. Scheirs, ed. (Wiley, New York, 1997), Chap. 28, pp. 541–555.
  3. L. Eldad and L. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000). [CrossRef]
  4. D. A. Babb, B. Ezzell, K. Clement, W. Richey, and A. Kennedy, J. Polym. Sci., Part A: Polym. Chem. 31, 3465 (1993). [CrossRef]
  5. E. Wagener, http://www.tetramertechnologies.com (personal communication, 2003).
  6. M. Oh, H. Lee, J. Ahn, and S. Han, “Asymmetric x-junction thermooptic switches based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10, 813–815 (1998). [CrossRef]
  7. H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000). [CrossRef]
  8. B. Lee, M. Kwon, J. Yoon, and S. Shin, “Fabrication of polymeric large-core waveguides for optical interconnects using rubber molding process,” IEEE Photon. Technol. Lett. 102, 62–64 (2000).
  9. H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000). [CrossRef]
  10. H. Ma, A. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14, 1339–1365 (2002). [CrossRef]
  11. D. Smith, S. Chen, S. Kuman, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585–1589 (2002). [CrossRef]
  12. R. Traiphol, H. Shah, D. Smith, and D. Perahia, “Bulk and interfacial studies of a new and versatile semifluorinated lyotropic liquid crystalline polymer,” Macromolecules 34, 3954–3961 (2001). [CrossRef]
  13. J. A. Woollam Co., Inc., 645 M St., Suite 102, Lincoln, Neb. 68508; (http://www.jawoollam.com).
  14. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998). [CrossRef]
  15. T. Tiwald, J. A. Woollam Company, 645 M St., Suite 102, Lincoln, Neb. 68508 (personal communication, 2003).
  16. G. H. Sigel, “Optical absorption in glasses,” Glass I: Interaction with Electromagnetic Radiation, Vol. 13 of Treatise on Materials Science and Engineering (Academic, New York, 1978), pp. 5–89.
  17. R. Nubling and J. Harrington, “Hollow waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 34, 372–380 (1996). [CrossRef]
  18. J. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–228 (2000). [CrossRef]
  19. D. Smith, D. Babb, H. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. Boone, C. Langhoff, and M. Radler, “Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials,” J. Fluorine Chem. 104, 109–117 (2000). [CrossRef]
  20. R. Nubling and J. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997). [CrossRef] [PubMed]
  21. C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998). [CrossRef]
  22. J. Jin, S. Kumar, S. Foulger, D. Smith, H. Liu, B. Mojazza, P. Go, and A. Shep, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 43, 609–610 (2002).
  23. J. Ballato, D. Smith, S. Foulger, and E. Wagener, eds., Design and Fabrication of Planar Optical Waveguide Devices and Materials, Proc. SPIE 4805, 1–8 (2003).
  24. W. Tropf, M. Thomas, and T. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Chap. 33, pp. 33.3–33.101. For the GeO2-doped SiO2 glass, the dispersion curve was computed using Eq. (2), where the n(λ) function, whose second derivative is taken with respect to λ, was a combination of the SiO2 and GeO2 refractive indices following the rule of mixing. In other words, n(λ)=0.96 nsilica(λ)+0.04 ngermania(λ), where the Sellmeier forms of nsilica and ngermania were used (per the above reference).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited