OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 9 — Sep. 1, 2003
  • pp: 1844–1852

Low-loss waveguides in ultrafast laser-deposited As 2 S 3 chalcogenide films

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies  »View Author Affiliations

JOSA B, Vol. 20, Issue 9, pp. 1844-1852 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultrafast pulsed laser deposition was used to successfully deposit atomically smooth 5-μm-thick As2S3 films. The as-deposited films were photosensitive at wavelengths close to the band edge (≈520 nm), and waveguides could be directly patterned into them by photodarkening using an argon-ion or frequency-doubled Nd:YAG laser. The linear and nonlinear optical properties of the films were measured as well as the photosensitivity of the material. The optical losses in photodarkened waveguides were <0.2 dB/cm at wavelengths beyond 1200 nm and <0.1 dB/cm in as-deposited films. The third-order nonlinearity, n2,As2S3, was measured using both four-wave mixing and the Z-scan technique and varied with wavelength from 100 to 200 times fused silica (n2,Silica3×10-16 cm2/W) between 1500 nm and 1100 nm with low nonlinear absorption.

© 2003 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4330) Materials : Nonlinear optical materials
(230.7370) Optical devices : Waveguides
(310.1860) Thin films : Deposition and fabrication

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films," J. Opt. Soc. Am. B 20, 1844-1852 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. Mater. Devices Syst. 3, 142–148 (1997). [CrossRef]
  2. A. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors,” Philos. Mag. B 52, 347–362 (1985). [CrossRef]
  3. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000). [CrossRef]
  4. Ka. Tanaka, Amorphous Semiconductor Technologies and Devices, Y. Hamakawa, ed. (Ohmsha, Tokyo, 1982), p. 227.
  5. S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71–98 (1986). [CrossRef]
  6. Ke. Tanaka, “Photoinduced structural changes in chalcogenide glasses,” Rev. Solid State Sci. 4, 641–659 (1990).
  7. A. Zakery, C. W. Slinger, P. J. S. Ewen, A. P. Firth, and A. E. Owen, “Chalcogenide gratings produced by the metal photodissolution effect,” J. Phys. D: Appl. Phys. 21, S78–S81 (1988). [CrossRef]
  8. C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodoped chalcogenides as potential infrared holographic media,” Appl. Opt. 1, 2490–2498 (1992). [CrossRef]
  9. J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17, 1184–1191 (1999). [CrossRef]
  10. S. Ramachandran and S. G. Bishop, “Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses,” Appl. Phys. Lett. 74, 13–15 (1999). [CrossRef]
  11. K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63, 1601–1603 (1993). [CrossRef]
  12. D. S. Gill, R. W. Eason, C. Zaldo, H. N. Rutt, and N. A. Vainos, “Characterization of Ga-La-S chalcogenide glass thin-film optical waveguides, fabricated by pulsed laser deposition,” J. Non-Cryst. Solids 191, 321–326 (1995). [CrossRef]
  13. A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999). [CrossRef]
  14. A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. Part II: Experiments on laser deposition of amorphous carbon films,” J. Appl. Phys. 85, 4222–4230 (1999). [CrossRef]
  15. A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, “Nonlinear As-S chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation,” Appl. Surf. Sci. 197–198, 481–485 (2002). [CrossRef]
  16. A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodarkening in As-S films and its application in grating fabrication,” J. Non-Cryst. Solids 198–200, 769–773 (1996). [CrossRef]
  17. J. P. DeNeufville, Amorphous and Liquid Semiconductors, J. Stuke and W. Brenig, eds. (Taylor and Francis, London, 1974), p. 1351.
  18. Ka. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26, 243–245 (1975). [CrossRef]
  19. R. Swanepoel, “Determining refractive index and thickness of thin films from wavelength measurements only,” J. Opt. Soc. Am. A 2, 1339–1343 (1985). [CrossRef]
  20. D. Goldschmidt, “Determination of the absorption edge of a thin film from transmission measurements,” J. Opt. Soc. Am. A 1, 275–277 (1984). [CrossRef]
  21. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon, Oxford, 1979), p. 289.
  22. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  23. G. M. Carter, “Excited-state dynamics and temporally resolved nonresonant nonlinear-optical processes in polydiacetylenes,” J. Opt. Soc. Am. B 4, 1018–1022 (1987). [CrossRef]
  24. M. Samoc, A. Samoc, B. Luther-Davies, Z. Bao, L. Yu, and U. Scherf, “Femtosecond Z-scan and degenerate four-wave mixing measurements of real and imaginary parts of the third-order nonlinearity of soluble conjugated polymers,” J. Opt. Soc. Am. B 15, 817–825 (1998). [CrossRef]
  25. F. P. Strohkendl, L. R. Dalton, R. W. Hellwarth, H. W. Sarkas, and Z. H. Kafafi, “Phase-mismatched degenerate four-wave mixing: complex third-order susceptibility tensor elements of C 60 at 768 nm,” J. Opt. Soc. Am. B 14, 92–98 (1997). [CrossRef]
  26. A. Zakery, “Optical constants of As-S chalcogenide glasses,” Iran. J. Sci. Technol. 20, 189–205 (1996).
  27. K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998). [CrossRef]
  28. F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited