OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 9 — Sep. 1, 2003
  • pp: 1853–1865

Multiple-scale coupled-mode theory for second-harmonic generation in one-dimensional periodic structures

Costantino De Angelis, Gianfranco Nalesso, Daniele Modotto, Michele Midrio, Andrea Locatelli, and J. Stewart Aitchison  »View Author Affiliations


JOSA B, Vol. 20, Issue 9, pp. 1853-1865 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001853


View Full Text Article

Acrobat PDF (364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the multiple-scale approach, we derive an analytical expression for the conversion efficiency of second-harmonic generation (SHG) in a one-dimensional photonic crystal. The results, obtained in the undepleted pump limit for the continuous-wave case, allow us to describe the role played by the feedback and the dispersion introduced by the periodic structure and hence to optimize the SHG process. Numerical simulations are then used to explore the pulsed pump case, proving that the obtained results retain their validity up to a pump field bandwidth of less than approximately 12% of the stack transmission bandwidth. Shorter pulses experience both a reduced conversion efficiency and shape distortions.

© 2003 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.4170) Optical devices : Multilayers

Citation
Costantino De Angelis, Gianfranco Nalesso, Daniele Modotto, Michele Midrio, Andrea Locatelli, and J. Stewart Aitchison, "Multiple-scale coupled-mode theory for second-harmonic generation in one-dimensional periodic structures," J. Opt. Soc. Am. B 20, 1853-1865 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-9-1853


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
  3. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10, 283–295 (1993).
  4. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature (London) 383, 699–702 (1996).
  5. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal,” Phys. Rev. Lett. 77, 3787–3790 (1996).
  6. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 387, 143–149 (1997).
  7. D. Labilloy, H. Benitsy, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
  8. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
  9. T. F. Krauss and R. M. De La Rue, “Photonic crystals in the optical regime—past, present and future,” Prog. Quantum Electron. 23, 51–96 (1999).
  10. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
  11. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
  12. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
  13. R. D. Meade, A. Devenyl, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
  14. N. Bloembergen and A. J. Sievers, “Nonlinear optical properties of periodic laminar structures,” Appl. Phys. Lett. 17, 483–485 (1970).
  15. S. Somekh and A. Yariv, “Phase-matchable nonlinear optical interactions in periodic thin films,” Appl. Phys. Lett. 21, 140–141 (1972).
  16. C. L. Tang and P. P. Bey, “Phase matching in second harmonic generation using artificial periodic structures,” IEEE J. Quantum Electron. QE-9, 9–17 (1973).
  17. J. P. van der Ziel, M. Ilegemes, P. W. Foy, and R. M. Mikulyak, “Phase-matched second harmonic generation in a periodic AlGaAs waveguide,” Appl. Phys. Lett. 29, 775–777 (1976).
  18. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures” Phys. Rev. A 56, 3166–3174 (1997).
  19. A. V. Balakin, V. A. Bushuev, N. I. Koroteev, B. I. Mantsyzov, I. A. Ozheredov, A. P. Shkurinov, D. Boucher, and P. Masselin, “Enhancement of second-harmonic generation with femtosecond laser pulses near the photonic band edge for different polarizations of incident light,” Opt. Lett. 24, 793–795 (1999).
  20. M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
  21. G. D’Aguanno, M. Centini, C. Sibilia, M. Bertolotti, M. Scalora, M. J. Bloemer, and C. M. Bowden, “Enhancement of χ(2) cascading processes in one-dimensional photonic bandgap structures,” Opt. Lett. 24, 1663–1665 (1999).
  22. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ(2) interactions,” Phys. Rev. E 64, 016609 (2001).
  23. Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021–3023 (2001).
  24. A. Arraf and C. M. de Sterke, “Coupled-mode equations for quadratically nonlinear deep gratings,” Phys. Rev. E 58, 7951–7958 (1998).
  25. J. W. Haus, R. Viswanathan, M. Scalora, A. G. Kalocsai, J. D. Cole, and J. Theimer, “Enhanced second-harmonic generation in media with a weak periodicity,” Phys. Rev. A 57, 2120–2128 (1998).
  26. T. Iizuka and C. M. de Sterke, “Corrections to coupled mode theory for deep gratings,” Phys. Rev. E 61, 4491–4499 (2000).
  27. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Generalized coupled-mode theory for χ(2) interactions in finite multilayered structures,” J. Opt. Soc. Am. B 19, 2111–2121 (2002).
  28. J. W. Haus, B. Y. Soon, M. Scalora, C. Sibilia, and I. V. Mel’nikov, “Coupled-mode equations for Kerr media with periodically modulated linear and nonlinear coefficients,” J. Opt. Soc. Am. B 19, 2282–2291 (2002).
  29. A. Nayfeh, Introduction to Perturbation Techniques (Wiley-Interscience, New York, 1993).
  30. A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, Oxford, UK, 1997).
  31. C. De Angelis, F. Gringoli, M. Midrio, D. Modotto, J. S. Aitchison, and G. F. Nalesso, “Conversion efficiency for second-harmonic generation in photonic crystals,” J. Opt. Soc. Am. B 18, 348–351 (2001).
  32. S. Adachi, “Ga As, Al As and AlxGa1−xAs: material parameters for use in research and device applications,” J. Appl. Phys. 58, R1–R29 (1985).
  33. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “Nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
  34. H. Rao, R. Scarmozzino, and R. M. Osgood, Jr., “A bidirectional beam propagation method for multiple dielectric interfaces,” IEEE Photon. Technol. Lett. 11, 830–832 (1999).
  35. A. Locatelli, F. M. Pigozzo, D. Modotto, A. D. Capobianco, and C. De Angelis, “Bidirectional beam propagation method for multilayered dielectrics with quadratic nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 8, 440–447 (2002).
  36. A. Locatelli, F. M. Pigozzo, D. Modotto, A. D. Capobianco, and C. De Angelis, “Novel bidirectional propagation method for quadratic nonlinear multilayers,” IEEE Photon. Technol. Lett. 14, 1536–1538 (2002).
  37. R. M. Joseph and A. Taflove, “FDTD Maxwell’s equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antennas Propag. 45, 364–374 (1997).
  38. Y. Xu, R. K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled resonator optical waveguide,” J. Opt. Soc. Am. B 17, 387–400 (2000).
  39. S. Mookherjea and A. Yariv, “Second-harmonic generation with pulses in a coupled-resonator optical waveguide,” Phys. Rev. E 65, 026607 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited