OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 1 — Jan. 1, 2004
  • pp: 101–112

Mesoscopic physics of photons

Eric Akkermans and Gilles Montambaux  »View Author Affiliations

JOSA B, Vol. 21, Issue 1, pp. 101-112 (2004)

View Full Text Article

Acrobat PDF (376 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We review the general features of coherent multiple scattering of electromagnetic waves in random media. In particular, coherent backscattering and angular correlation functions of speckle patterns are studied in some detail. We present a general formalism based on a physically intuitive description that also permits us to derive quantitative expressions. Then, the notion of phase boxes describing the quantum crossings of diffusons is discussed. This notion permits us to understand the long-range correlations that are at the origin of most of the mesoscopic effects either for electrons or photons. Then, we turn to the problem of decoherence, namely, the washing out of interference effects. We use as an example the effect of a nondeterministic motion of the scatterers. We discuss some applications of these ideas to diffusive wave spectroscopy, including calculations of the intensity–time correlation function in the presence of quantum crossings.

© 2004 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.5620) Coherence and statistical optics : Radiative transfer
(030.6140) Coherence and statistical optics : Speckle
(290.4210) Scattering : Multiple scattering

Eric Akkermans and Gilles Montambaux, "Mesoscopic physics of photons," J. Opt. Soc. Am. B 21, 101-112 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. “Mesoscopic quantum physics,” in Proceedings of the Les Houches Summer School, Session LXI, E. Akkermans, G. Montambaux, J. L. Pichard, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1995).
  2. Y. Imry, “The physics of mesoscopic systems,” in Directions in Condensed Matter Physics, G. Grinstein and G. Mazenko, eds. (World Scientific, Singapore, 1986).
  3. Y. Imry, Introduction to Mesoscopic Physics (Mesoscopic Physics and Nanotechnology) 2nd ed. (Oxford University, Oxford, UK, 2002).
  4. S. Chakraverty and A. Schmid, “Weak-localization: the quasi-classical theory of electrons in a random potential,” Phys. Rep. 140, 193–236 (1986).
  5. E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (EDP Sciences-CNRS, Paris, 2004).
  6. Scattering and Localization of Classical Waves in Random Media, P. Sheng, ed. (World Scientific, Singapore, 1990).
  7. E. Akkermans and G. Montambaux, “Coherent multiple scattering in disordered media,” http: //arxiv.org/abs/cond-mat/0104013.
  8. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, Cambridge, UK, 1999), Chap. X.
  9. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, UK, 1995).
  10. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley, New York, 1976).
  11. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media: The effect of Brownian motion of scatterers,” Z. Phys. B: Condens. Matter 65, 409–414 (1987).
  12. P. E. Wolf and G. Maret, “Dynamics of Brownian particles from strongly multiple light scattering,” in Scattering in Volumes and Surfaces, M. Nieto-Vesperinas and J. C. Dainty, eds. (North-Holland, Amsterdam, 1990).
  13. G. Labeyrie, F. de Tomasi, J.-C. Bernard, C. A. Müller, C. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms,” Phys. Rev. Lett. 83, 5266–5269 (1999).
  14. T. Jonckheere, C. A. Müller, R. Kaiser, C. Miniatura, and D. Delande, “Multiple scattering of light by atoms in the weak localization regime,” Phys. Rev. Lett. 85, 4269–4272 (2000).
  15. A. A. Golubentsev, “Suppression of interference effects in multiple scattering of light,” Sov. Phys. JETP 59, 26–39 (1984).
  16. E. Akkermans and R. Maynard, “Weak localization of waves,” J. Phys. (France) Lett. 46, L1045–1053 (1985).
  17. E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56, 1471–1474 (1986).
  18. E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. (Paris) 49, 77–98 (1988).
  19. B. G. Hoover, L. Deslauriers, S. M. Grannell, R. E. Ahmed, D. S. Dilworth, B. D. Athey, and E. N. Leith, “Correlations among angular wave component amplitudes in elastic, multiple-scattering random media,” Phys. Rev. E 65, 026614–026621 (2002).
  20. P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
  21. M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
  22. D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, “Experimental evidence for recurrent multiple-scattering events of light in disordered media,” Phys. Rev. Lett. 74, 4193–4196 (1995).
  23. A precursor of this effect has been observed in L. Tsang and A. Ishimaru, “Backscattering enhancement of random discrete scatterers,” J. Opt. Soc. Am. A 1, 836–839 (1984).
  24. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  25. B. Shapiro, “Large-intensity fluctuations for wave propagation in random media,” Phys. Rev. Lett. 57, 2168–2171 (1986).
  26. R. Berkovits and S. Feng, “Correlations in coherent multiple scattering,” Phys. Rep. 238, 135–172 (1994).
  27. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
  28. S. Hikami, “Anderson localization in a nonlinear-σ-model representation,” Phys. Rev. B 24, 2671–2679 (1981).
  29. M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
  30. S. Feng and P. A. Lee, “Mesoscopic conductors and correlations in laser speckle patterns,” Science 251, 633–639 (1991).
  31. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
  32. R. Pnini and B. Shapiro, “Fluctuations in transmission of waves through disordered slabs,” Phys. Rev. B 39, 6986–6994 (1989).
  33. S. Washburn, “Fluctuations in the extrinsic conductivity of disordered metals,” IBM J. Res. Dev. 32, 335–346 (1988).
  34. B. L. Al’tshuler and B. Shklovskiĭ, “Repulsion of energy lev-els and conductivity of small metal samples,” Sov. Phys. JETP 64, 127–141 (1986).
  35. F. Scheffold and G. Maret, “Universal conductance of light,” Phys. Rev. Lett. 81, 5800–5803 (1998).
  36. A. G. Aronov and Y. V. Sharvin, “Magnetic flux effects in disordered conductors,” Rev. Mod. Phys. 59, 755–779 (1987).
  37. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
  38. M. J. Stephen, “Temporal fluctuations in wave propagation in random media,” Phys. Rev. B 37, 1–5 (1988).
  39. G. Maret, “Dynamic speckla correlations,” in NATO Advanced Study Institute on Waves and Imaging through Ran-dom Media, P. Sebbah, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 413–434.
  40. F. Scheffold, W. Hartl, G. Maret, and E. Matijevic, “Observation of long-range correlations in temporal–intensity fluctuations of light,” Phys. Rev. B 56, 10942–10952 (1997).
  41. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, UK, 1986).
  42. E. Akkermans, C. Miniatura, and C. A. Müller, “Phase coherence times in the multiple scattering of photons by cold atoms,” http://arxiv.org/abs/cond-mat/0206298.
  43. C. A. Müller and C. Miniatura, “Multiple scattering of light by atoms with internal degeneracy,” J. Phys. A 35, 10163–10188 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited