OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 1 — Jan. 1, 2004
  • pp: 121–131

High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers

A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner  »View Author Affiliations

JOSA B, Vol. 21, Issue 1, pp. 121-131 (2004)

View Full Text Article

Acrobat PDF (268 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical modes in finite partially ordered arrays of dielectric particles are studied within the coupled dipole approach. It is shown that high-quality modes can be attained under conditions of small enough interparticle distance when the light-cone constraint is satisfied. We performed analytical and numerical investigations of these modes to determine their dependence on system size, dimensionality, and extent of disordering. The opportunity to use these modes to make high-performance random lasers is discussed.

© 2004 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(160.2900) Materials : Optical storage materials

A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, "High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers," J. Opt. Soc. Am. B 21, 121-131 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulous, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
  2. D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
  3. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
  4. A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature 404, 850–853 (2000).
  5. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. Chem. 91, 634–643 (1987).
  6. V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281–2291 (1993).
  7. V. M. Shalaev and A. K. Sarychev, “Nonlinear optics of random metal–dielectric films,” Phys. Rev. B 57, 13, 265–13, 288 (1998).
  8. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
  9. G. C. Schatz, “Electrodynamics of nonspherical noble metal nanoparticles and nanoparticle aggregates,” J. Mol. Struct.: THEOCHEM 573, 73–80 (2001).
  10. A. K. Sarychev and V. M. Shalaev, “Theory of nonlinear optical responses in metal–dielectric composites,” Top. Appl. Phys. 82, 169–184 (2002).
  11. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
  12. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
  13. D. Wiersma, “Laser physics—the smallest random laser,” Nature 406, 132–132 (2000).
  14. S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
  15. O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
  16. M. N. Shkunov, Z. V. Vardeny, M. C. DeLong, R. C. Polson, A. A. Zakhidov, and R. H. Baughman, “Tunable, gap-state lasing in switchable directions for opal photonic crystals,” Adv. Funct. Mater. 12, 21–26 (2002).
  17. V. I. Kopp, A. Z. Genack, and Z. Q. Zhang, “Large coherence area thin-film photonic stop-band lasers,” Phys. Rev. Lett. 86, 1753–1756 (2001).
  18. J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
  19. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band-edge laser—a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
  20. M. N. Shkunov, N. C. DeLong, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Photonic versus random lasing in opal single crystals,” Synth. Met. 116, 485–491 (2001).
  21. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
  22. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
  23. S. Fan and J. D. Joannopolous, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
  24. S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991).
  25. A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88, 093904 (2002).
  26. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).
  27. T. S. Misirpashaev and C. W. J. Beenakker, “Lasing threshold and mode competition in chaotic cavities,” Phys. Rev. A 57, 2041–2045 (1998).
  28. A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
  29. Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, E. W. Seelig, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
  30. A. M. Afanas’ev and Yu. Kagan, “Change of resonance nuclear parameters during scattering by regular systems,” Sov. Phys. JETP 23, 178–184 (1966).
  31. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
  32. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikuli, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B (to be published).
  33. P. Sievert, Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208–3113 (personal communication, 2003).
  34. V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Crossover between universality classes in the statistics of rare events in disordered conductors,” Phys. Rev. Lett. 89, 126601 (2002).
  35. V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89, 016802 (2002).
  36. M. L. Brongersma, J. M. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
  37. S. A. Maier, M. L. Brongersma, and H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices,” Appl. Phys. Lett. 78, 16–18 (2001).
  38. A. L. Burin, M. A. Ratner, and H. Cao, “Understanding and control of random lasing,” Physica B (to be published).
  39. G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A 65, 013807 (2002).
  40. M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun. 201, 405–411 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited