OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 1 — Jan. 1, 2004
  • pp: 141–149

Optimal tuning of lasing modes through collective particle resonance

Jorge Ripoll, Costas M. Soukoulis, and Eleftherios N. Economou  »View Author Affiliations

JOSA B, Vol. 21, Issue 1, pp. 141-149 (2004)

View Full Text Article

Acrobat PDF (1284 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One of the current challenges in laser optics is to take advantage of the resonant modes within particles to obtain high-quality microcavities with low threshold. We present a study of the effect that the internal resonances of individual particles have on the emitted intensity, and demonstrate how optimal tuning of the size and separation of the particles can enhance the quality factor by more than four orders of magnitude. The potential applications of this work on the design of an optimal microcavity and on a random laser are discussed.

© 2004 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.2540) Materials : Fluorescent and luminescent materials
(290.4210) Scattering : Multiple scattering

Jorge Ripoll, Costas M. Soukoulis, and Eleftherios N. Economou, "Optimal tuning of lasing modes through collective particle resonance," J. Opt. Soc. Am. B 21, 141-149 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  2. E. Wolf, ed., Progress in Optics, Vol. XLI (Elsevier North-Holland, Amsterdam, 2000).
  3. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–477 (1980).
  4. H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Spectral properties of lasing microdroplets,” J. Opt. Soc. Am. B 9, 43–50 (1992).
  5. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23, 247–249 (1998).
  6. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
  7. J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
  8. H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3614 (2000).
  9. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
  10. P. M. Visser, K. Allart, and D. Lenstra, “Dielectric structures with bound modes for microcavity lasers,” Phys. Rev. E 65, 056604 (2002).
  11. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).
  12. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
  13. M. Siddique, R. R. Alfano, G. A. Berger, M. Kempe, and A. Z. Genack, “Time-resolved studies of stimulated emission from colloidal dye solutions,” Opt. Lett. 21, 450–452 (1996).
  14. S. John, “Localization of light,” Phys. Today 44, 32–40 (1991).
  15. D. S. Wiersma, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
  16. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
  17. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
  18. H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
  19. S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
  20. Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
  21. G. Zacharakis, N. Papadogiannis, G. Filippidis, and T. G. Papazoglou, “Photon statistics of laserlike emission from polymeric scattering gain media,” Opt. Lett. 25, 923–925 (2000).
  22. X. Jiang and C. M. Soukoulis, “Time-dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
  23. C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
  24. Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84 (2000).
  25. A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
  26. S. John and G. Pang, “Theory of lasing in a multiple-scattering medium,” Phys. Rev. A 54, 3642–3652 (1996).
  27. J. R. Arias-Gonzalez and M. Nieto-Vesperinas, “Near-field distributions of resonant modes in small dielectric objects on flat surfaces,” Opt. Lett. 25, 782–784 (2000).
  28. J. R. Arias-Gonzalez and M. Nieto-Vesperinas, “Radiation pressure over dielectric and metallic nanocylinders on surfaces: polarization dependence and plasmon resonance conditions,” Opt. Lett. 27, 2149–2151 (2002).
  29. M. Lester, J. R. Arias-Gonzalez, and M. Nieto-Vesperinas, “Fundamentals and model of photonic-force microscopy,” Opt. Lett. 26, 707–709 (2001).
  30. J. R. Arias-Gonzalez, M. Nieto-Vesperinas, and M. Lester, “Modeling photonic-force microscopy with metallic particles under plasmon eigenmode excitation,” Phys. Rev. B 65, 115402 (2002).
  31. J. M. Soto-Crespo and M. Nieto-Vesperinas, “Scattering from very rough random surfaces and deep reflection gratings,” J. Opt. Soc. Am. A 6, 367–384 (1989).
  32. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255–307 (1990).
  33. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Pergamon, New York, 1996).
  34. Z. Chen, A. Taflove, and V. Backman, “Equivalent volume-averaged light scattering behavior of randomly inhomogeneous dielectric spheres in the resonant range,” Opt. Lett. 28, 765–767 (2003).
  35. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Academic, New York, 1995).
  36. J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces (Adam Hilger, Bristol, 1991).
  37. J. A. Sanchez-Gil and M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am. A 8, 1270–1286 (1991).
  38. J. Ripoll, A. Madrazo, and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a body over a random rough surface,” Opt. Commun. 142, 173–178 (1997).
  39. T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quant. Spectrosc. Radiat. Transf. 60, 411–423 (1998).
  40. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  41. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  42. H.-B. Lin, A. L. Huston, J. D. Eversole, and A. J. Campillo, “Internal scattering effects on microdroplet resonant emission structure,” Opt. Lett. 17, 970–972 (1992).
  43. P. R. Conwell, P. W. Barber, and C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).
  44. B. A. Hunter, M. A. Box, and B. Maier, “Resonance structure in weakly absorbing spheres,” J. Opt. Soc. Am. A 5, 1281–1286 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited