OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 1 — Jan. 1, 2004
  • pp: 168–176

Dynamic instability of speckle patterns in nonlinear random media

Sergey E. Skipetrov  »View Author Affiliations

JOSA B, Vol. 21, Issue 1, pp. 168-176 (2004)

View Full Text Article

Acrobat PDF (221 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Linear stability analysis is performed of speckle pattern resulting from multiple, diffuse scattering of coherent light waves in random media with intensity-dependent refractive index (noninstantaneous Kerr nonlinearity). The speckle pattern is shown to become unstable with respect to dynamic perturbations within a certain frequency band, provided that the nonlinearity exceeds some frequency-dependent threshold. Although the absolute instability threshold is independent of the response time of the nonlinearity, the latter significantly affects speckle dynamics (in particular, its spectral content) beyond the threshold. Our results suggest that speckle dynamics becomes chaotic immediately beyond the threshold.

© 2004 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(190.3100) Nonlinear optics : Instabilities and chaos
(190.5940) Nonlinear optics : Self-action effects

Sergey E. Skipetrov, "Dynamic instability of speckle patterns in nonlinear random media," J. Opt. Soc. Am. B 21, 168-176 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. C. W. van Rossum and Th. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
  2. Waves and Imaging through Complex Media, P. Sebbah, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001).
  3. Wave Scattering in Complex Media: From Theory to Applications, B. A. van Tiggelen and S. E. Skipetrov, eds. (Kluwer Academic, Dordrecht, The Netherlands, 2003).
  4. B. Shapiro, “Large intensity fluctuations for wave propagation in random media,” Phys. Rev. Lett. 57, 2168–2171 (1986).
  5. M. J. Stephen and G. Cwilich, “Intensity correlation functions and fluctuations in light scattered from a random medium,” Phys. Rev. Lett. 59, 285–287 (1987).
  6. A. Yu. Zyuzin and B. Z. Spivak, “Langevin description of mesoscopic fluctuations in disordered media,” Sov. Phys. JETP 66, 560–566 (1987).
  7. R. Pnini and B. Shapiro, “Fluctuations in transmission of waves through disordered slabs,” Phys. Rev. B 39, 6986–6994 (1989).
  8. M. P. van Albada, J. F. de Boer, and A. Lagendijk, “Observation of long-range intensity correlation in the transport of coherent light through a random medium,” Phys. Rev. Lett. 64, 2787–2790 (1990).
  9. A. Z. Genack, N. Garcia, and W. Polkosnik, “Long-range intensity correlation in random media,” Phys. Rev. Lett. 65, 2129–2132 (1990).
  10. P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro, “Spatial-field correlation: the building block of mesoscopic fluctuations,” Phys. Rev. Lett. 88, 123901 (2002).
  11. F. Scheffold, W. Härtl, G. Maret, and E. Matijević, “Observation of long-range correlations in temporal intensity fluctuations of light,” Phys. Rev. B 56, 10942–10952 (1997).
  12. B. Shapiro, “New type of intensity correlation in random media,” Phys. Rev. Lett. 83, 4733–4735 (1999).
  13. S. E. Skipetrov and R. Maynard, “Nonuniversal correlations in multiple scattering,” Phys. Rev. B 62, 886–891 (2000).
  14. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
  15. F. Scheffold and G. Maret, “Universal conductance fluctuations of light,” Phys. Rev. Lett. 81, 5800–5803 (1998).
  16. G. Maret and P.-E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
  17. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
  18. R. Berkovits, “Sensitivity of the multiple-scattering speckle pattern to the motion of a single scatterer,” Phys. Rev. B 43, 8638–8640 (1991).
  19. F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, V. Trappe, C. Urban, S. Skipetrov, L. Cipelleti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci., to be published.
  20. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
  21. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
  22. D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414, 708–709 (2001).
  23. R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297, 2026–2030 (2002).
  24. N. Bloembergen, Nonlinear Optics (World Scientific, Singapore, 1996).
  25. R. W. Boyd, Nonlinear Optics (Academic, New York, 2002).
  26. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).
  27. F. T. Arecchi, S. Boccaletti, and P. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999).
  28. Self-Organization in Optical Systems and Applications in Information Technology, M. A. Vorontsov and W. B. Miller, eds. (Springer-Verlag, Berlin, 1999).
  29. A. A. Sukhorukov, Yu. S. Kivshar, O. Bang, J. J. Rasmussen, and P. L. Christiansen, “Nonlinearity and disorder: classification and stability of nonlinear impurity modes,” Phys. Rev. E 63, 036601 (2001).
  30. A. Trombettoni, A. Smerzi, and A. R. Bishop, “Discrete nonlinear Schrödinger equation with defects,” Phys. Rev. E 67, 016607 (2003).
  31. G. B. Al’tshuler, V. S. Ermolaev, K. I. Krylov, A. A. Manenkov, and A. M. Prokhorov, “Self-transparency effects in heterogeneous nonlinear scattering media and their possible use in lasers,” J. Opt. Soc. Am. B 3, 660–667 (1986).
  32. P. Sebbah, P. Sixou, C. Vanneste, and H. Guillard, “Nonlinear scattering and optical power limitation in direct and inverse polymer dispersed liquid crystal,” Nonlinear Opt. 27, 377–383 (2001).
  33. V. M. Agranovich and V. E. Kravtsov, “Nonlinear backscattering from opaque media,” Phys. Rev. B 43, 13691–13694 (1991).
  34. V. E. Kravtsov, V. M. Agranovich, and K. I. Grigorishin, “Theory of second-harmonic generation in strongly scattering media,” Phys. Rev. B 44, 4931–4942 (1991).
  35. J. F. de Boer, A. Lagendijk, R. Sprik, and S. Feng, “Transmission and reflection correlations of second harmonic waves in nonlinear random media,” Phys. Rev. Lett. 71, 3947–3950 (1993).
  36. A. J. van Wonderen, “Diagrammatic treatment of light scattering by a collection of Kerr particles,” Phys. Rev. B 50, 2921–2940 (1994).
  37. R. Bressoux and R. Maynard, “On the speckle correlation in nonlinear random media,” Europhys. Lett. 50, 460–465 (2000).
  38. B. Spivak and A. Zyuzin, “Mesoscopic sensitivity of speckles in disordered nonlinear media to changes of the scattering potential,” Phys. Rev. Lett. 84, 1970–1973 (2000).
  39. S. E. Skipetrov and R. Maynard, “Instabilities of waves in nonlinear disordered media,” Phys. Rev. Lett. 85, 736–739 (2000).
  40. S. E. Skipetrov, “Temporal fluctuations of waves in weakly nonlinear disordered media,” Phys. Rev. E 63, 056614 (2001).
  41. S. E. Skipetrov, “Langevin description of speckle dynamics in nonlinear disordered media,” Phys. Rev. E 67, 016601 (2003).
  42. K. Ikeda, H. Daido, and O. Akimoto, “Optical turbulence: chaotic behavior of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 709–712 (1980).
  43. H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, “Observation of bifurcation to chaos in an all-optical bistable system,” Phys. Rev. Lett. 50, 109–112 (1983).
  44. Y. Silberberg and I. Bar Joseph, “Instabilities, self-oscillation, and chaos in a simple nonlinear optical interaction,” Phys. Rev. Lett. 48, 1541–1543 (1982).
  45. Y. Silberberg and I. Bar Joseph, “Optical instabilities in a nonlinear Kerr medium,” J. Opt. Soc. Am. B 1, 662–670 (1984).
  46. M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, “Modulation instability of incoherent beams in noninstantaneous nonlinear media,” Phys. Rev. Lett. 84, 467–470 (2000).
  47. D. Kip, M. Soljacic, M. Segev, E. Eugenieva, and D. N. Christodoulides, “Modulation instability and pattern formation in spatially incoherent light beams,” Science 290, 495–498 (2000).
  48. As regards the effect of the noninstantaneous nature of nonlinearity on speckle dynamics, our first results have been announced in S. E. Skipetrov, “Instability of speckle patterns in random media with noninstantaneous Kerr nonlinearity,” Opt. Lett. 28, 646–648 (2003).
  49. S. E. Skipetrov and R. Maynard, “Diffuse waves in nonlinear disordered media,” in Ref. 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited