OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 1 — Jan. 1, 2004
  • pp: 201–207

Temperature-tunable random lasing: numerical calculations and experiments

Sushil Mujumdar, Stefano Cavalieri, and Diederik S. Wiersma  »View Author Affiliations

JOSA B, Vol. 21, Issue 1, pp. 201-207 (2004)

View Full Text Article

Acrobat PDF (163 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report numerical studies on temperature-tunable, multiple-scattering media with gain. We describe Monte Carlo simulations that model the behavior of such a system through a three-dimensional random walk of light in a temperature-dependent disordered medium with amplification. We compare the results of our model with previous experimental results on a disordered dielectric for which the scattering strength could be tuned by changing the external temperature. The agreement between the numerical and experimental results enables us to predict the spectral features of the emission from the tunable random laser under various conditions. Results obtained from new experimental data are consistent with the predictions of the simulations.

© 2004 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(230.3720) Optical devices : Liquid-crystal devices
(290.4210) Scattering : Multiple scattering

Sushil Mujumdar, Stefano Cavalieri, and Diederik S. Wiersma, "Temperature-tunable random lasing: numerical calculations and experiments," J. Opt. Soc. Am. B 21, 201-207 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic, San Diego, Calif., 1995).
  2. G. L. J. A. Rikken and B. A. van Tiggelen, “Observation of magneto-transverse light diffusion,” Nature 381, 54–55 (1996).
  3. A. Sparenberg, G. L. J. A. Rikken, and B. A. van Tiggelen, “Observation of photonic magnetoresistance,” Phys. Rev. Lett. 79, 757–760 (1997).
  4. F. Scheffold and G. Maret, “Universal conductance fluctuations of light,” Phys. Rev. Lett. 81, 5800–5803 (1998).
  5. Y. Kuga and A. Ishimaru, “Retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A 1, 831–835 (1984).
  6. M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
  7. P. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
  8. P. W. Anderson, “The question of classical localization: a theory of white paint?,” Philos. Mag. B 52, 505–509 (1985).
  9. Sajeev John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
  10. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).
  11. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
  12. S. John and G. Pang, “Theory of lasing in a multiple-scattering medium,” Phys. Rev. A 54, 3642–3652 (1996).
  13. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
  14. G. A. Berger, M. Kempe, and A. Z. Genack, “Dynamics of stimulated emission from random media,” Phys. Rev. E 56, 6118–6122 (1997).
  15. S. Mujumdar and H. Ramachandran, “Spectral features of emissions from random amplifying media,” Opt. Commun. 176, 31–41 (2000).
  16. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
  17. Xunya Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
  18. C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
  19. A. Yu. Zyuzin, “Transmission fluctuations and spectral rigidity of lasing states in a random amplifying medium,” Phys. Rev. E 51, 5274–5278 (1995).
  20. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
  21. S. Chandrasekhar, Liquid Crystals (Cambridge University, Cambridge, UK, 1977).
  22. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford, New York, 1993).
  23. D. S. Wiersma, M. Colocci, R. Righini, and F. Aliev, “Temperature-controlled light diffusion in random media,” Phys. Rev. B 64, 144208 (2001).
  24. D. S. Wiersma and S. Cavalieri, “A temperature-tunable random laser,” Nature 414, 708–709 (2001).
  25. D. S. Wiersma and S. Cavalieri, “Temperature-controlled random laser action in liquid crystal infiltrated systems,” Phys. Rev. E 66, 056612 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited