OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 1 — Jan. 1, 2004
  • pp: 208–213

Random laser action in organic–inorganic nanocomposites

Demetrios Anglos, Andreas Stassinopoulos, Rabindra N. Das, Giannis Zacharakis, Maria Psyllaki, Rachel Jakubiak, Richard A. Vaia, Emmanuel P. Giannelis, and Spiros H. Anastasiadis  »View Author Affiliations


JOSA B, Vol. 21, Issue 1, pp. 208-213 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000208


View Full Text Article

Enhanced HTML    Acrobat PDF (142 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Random laser action is demonstrated in organic–inorganic, disordered hybrid materials consisting of ZnO semiconductor nanoparticles dispersed in an optically inert polymer matrix. The ZnO particles provide both the gain and the strong scattering power that leads to light trapping due to multiple elastic scattering, whereas the polymer matrix offers ease of material fabrication and processability in view of potential applications. Excitation of the nanohybrids by a laser pulse with duration shorter than the ZnO photoluminescence lifetime leads to a dramatic increase in the emitted light intensity accompanied by a significant spectral and temporal narrowing above a certain threshold of the excitation energy density. Critical laser and material parameters that influence the observed laser-like emission behavior are investigated in a series of nanocomposites.

© 2004 Optical Society of America

OCIS Codes
(140.6630) Lasers and laser optics : Superradiance, superfluorescence
(160.0160) Materials : Materials
(160.2540) Materials : Fluorescent and luminescent materials
(160.5470) Materials : Polymers
(290.4210) Scattering : Multiple scattering
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Citation
Demetrios Anglos, Andreas Stassinopoulos, Rabindra N. Das, Giannis Zacharakis, Maria Psyllaki, Rachel Jakubiak, Richard A. Vaia, Emmanuel P. Giannelis, and Spiros H. Anastasiadis, "Random laser action in organic–inorganic nanocomposites," J. Opt. Soc. Am. B 21, 208-213 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-1-208


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994). [CrossRef]
  2. N. B. Lawandy, “Paint-on lasers light the way for new technologies,” Photonics Spectra, July, 119–124 (1994).
  3. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).
  4. M. Siddique, R. R. Alfano, G. A. Berger, M. Kempe, and A. Z. Genack, “Time-resolved studies of stimulated emission from colloidal dye solutions,” Opt. Lett. 21, 450–452 (1996). [CrossRef] [PubMed]
  5. S. John, “Localization of light,” Phys. Today 44, 32–40 (1991). [CrossRef]
  6. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996). [CrossRef]
  7. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998). [CrossRef]
  8. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999). [CrossRef]
  9. G. van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24, 306–308 (1999). [CrossRef]
  10. H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000). [CrossRef]
  11. H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76, 2997–2999 (2000). [CrossRef]
  12. H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000). [CrossRef] [PubMed]
  13. D. S. Wiersma, “The smallest random laser,” Nature 406, 132–133 (2000). [CrossRef] [PubMed]
  14. G. Zacharakis, G. Heliotis, G. Filippidis, D. Anglos, and T. G. Papazoglou, “Investigation of the laser-like behavior of polymeric scattering gain media under subpicosecond laser excitation,” Appl. Opt. 38, 6087–6092 (2000). [CrossRef]
  15. S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999). [CrossRef]
  16. Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001). [CrossRef]
  17. E. Gross, D. Kovalev, N. Künzner, J. Diener, F. Koch, and M. Fujii, “Stimulated light emission in dense fog confined inside a porous glass matrix,” Phys. Rev. Lett. 89, 267401 (2002). [CrossRef] [PubMed]
  18. G. Zacharakis, N. Papadogiannis, G. Filippidis, and T. G. Papazoglou, “Photon statistics of laser-like emission from polymeric scattering gain media,” Opt. Lett. 25, 923–925 (2000). [CrossRef]
  19. H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001). [CrossRef] [PubMed]
  20. C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001). [CrossRef]
  21. X. Jiang and C. M. Soukoulis, “Time-dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000). [CrossRef] [PubMed]
  22. Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84 (2000). [CrossRef]
  23. C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamicresponse and relaxation oscillations in random lasers,” Phys. Rev. B 65, 041103 (2002). [CrossRef]
  24. S. W. Jung, W. I. Park, H. D. Cheong, G.-C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1924–1926 (2002). [CrossRef]
  25. Absorption spectra of neat polymer films measured in our laboratory show that PDMS and PMMA have a much lower, though nonnegligible, optical density at 248 nm compared with PS and epoxy. This is in agreement with absorption coefficient data for PMMA26 (100 cm−1) and PS27 (6290 cm−1). Moreover, at 355 nm, spectra show that PDMS, PMMA, and PS have negligible absorbance.
  26. M. Bolle and S. Lazare, “Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet laser radiation,” J. Appl. Phys. 73, 3516–3524 (1993). [CrossRef]
  27. S. Lazare and V. Granier, “Excimer laser light induced ablation and reactions at polymer surfaces as measured with a quartz-crystal microbalance,” J. Appl. Phys. 63, 2110–2115 (1988). [CrossRef]
  28. P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985). [CrossRef] [PubMed]
  29. G. van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24, 306–308 (1999). [CrossRef]
  30. F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256, 424–430 (1996). [CrossRef]
  31. S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56, R4363–R4366 (1997). [CrossRef]
  32. S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999). [CrossRef]
  33. R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random lasing in π-conjugated films and infiltrated opals,” Adv. Mater. 13, 760–764 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited