OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 1 — Jan. 1, 2004
  • pp: 214–222

Electrical generation of stationary light in random scattering media

S. M. Redmond, G. L. Armstrong, H.-Y. Chan, E. Mattson, A. Mock, B. Li, J. R. Potts, M. Cui, S. C. Rand, S. L. Oliveira, J. Marchal, T. Hinklin, and R. M. Laine  »View Author Affiliations


JOSA B, Vol. 21, Issue 1, pp. 214-222 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000214


View Full Text Article

Enhanced HTML    Acrobat PDF (206 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In recent years there has been great interest in controlling the speed of propagation of electromagnetic waves. In gases and crystals, coherent techniques have been applied to alter the speed of light without changing the physical or chemical structure of the medium. Also, light transmitted by highly disordered solids has exhibited signatures of Anderson localization, indicating the existence of a regime of “stopped” light that is mediated by random elastic scattering. However, to date, light has not been generated in a random medium as a pointlike excitation that is fixed in space from the outset. Here we report experimental evidence for the electrical generation and confinement of light within nanosized volumes of a random dielectric scattering medium in which a population inversion has been established, and discuss the properties of these novel light sources.

© 2004 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(290.0290) Scattering : Scattering
(290.4210) Scattering : Multiple scattering

Citation
S. M. Redmond, G. L. Armstrong, H.-Y. Chan, E. Mattson, A. Mock, B. Li, J. R. Potts, M. Cui, S. C. Rand, S. L. Oliveira, J. Marchal, T. Hinklin, and R. M. Laine, "Electrical generation of stationary light in random scattering media," J. Opt. Soc. Am. B 21, 214-222 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-1-214


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  2. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001). [CrossRef] [PubMed]
  3. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002). [CrossRef] [PubMed]
  4. A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002). [CrossRef] [PubMed]
  5. A. Andre and M. D. Lukin, “Manipulating light pulses via dynamically-controlled photonic bandgap,” Phys. Rev. Lett. 89, 143602 (2002). [CrossRef]
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003). [CrossRef] [PubMed]
  7. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).
  8. J. D. Joannopoulos, Photonic Crystals—Controlling the Flow of Light (Princeton University, Princeton, N.J., 1995).
  9. See for example P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic, London, 1995).
  10. P. W. Anderson, “Absence of diffusion in certain lattices,” Phys. Rev. 109, 1492–1505 (1958). [CrossRef]
  11. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984). [CrossRef]
  12. P. W. Anderson, “The question of classical localization: a theory of white paint?” Philos. Mag. B 52, 505–509 (1985). [CrossRef]
  13. A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous and liquid electronic semiconductors,” Prog. Semicond. 4, 237–291 (1960).
  14. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997). [CrossRef]
  15. D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, “Experimental evidence for recurrent multiple scattering events in disordered media,” Phys. Rev. Lett. 74, 4193–4196 (1995). [CrossRef] [PubMed]
  16. A. Z. Genack and N. Garcia, “Observation of photon localization in a three-dimensional disordered system,” Phys. Rev. Lett. 66, 2064–2067 (1991). [CrossRef] [PubMed]
  17. A. A. Chabanov and A. Z. Genack, “Photon localization in resonant media,” Phys. Rev. Lett. 87, 153901 (2001). [CrossRef] [PubMed]
  18. K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991). [CrossRef] [PubMed]
  19. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, Cambridge, U.K., 1999), p. 723.
  20. G. S. Agarwal and S. D. Gupta, “Reciprocity relations for reflected amplitudes,” Opt. Lett. 27, 1205–1207 (2002). [CrossRef]
  21. See for example A. Siegman, Lasers (University Science, Sausalito, Calif., 1986).
  22. See for example K. Kamiuto, “Near-field scattering by a small spherical particle embedded in a nonabsorbing medium,” J. Opt. Soc. Am. B 1, 840–844 (1984). [CrossRef]
  23. L. M. Zurk, L. Tsang, K. H. Ding, and D. P. Winnebrenner, “Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and nonclustered geometries,” J. Opt. Soc. Am. A 12, 1772–1778 (1995). [CrossRef]
  24. P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000). [CrossRef]
  25. S. M. Redmond, “Luminescent instabilities and nonradiative processes in rare earth systems,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 2003).
  26. V. V. Klimov and V. S. Letokhov, “Enhancement and inhibition of spontaneous emission rates in nanobubbles,” Chem. Phys. Lett. 301, 441–448 (1999). [CrossRef]
  27. N. Garcia, A. Z. Genack, and A. A. Lisyansky, “Measurement of the transport mean free path of diffusing photons,” Phys. Rev. B 46, 14475–14479 (1992). [CrossRef]
  28. A. Z. Genack, “Optical transmission in disordered media,” Phys. Rev. Lett. 58, 2043–2046 (1987). [CrossRef] [PubMed]
  29. G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A 65, 013807 (2000). [CrossRef]
  30. X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59, 6159–6166 (1999). [CrossRef]
  31. L. Laversenne, Y. Guyot, C. Goutaudier, M. Th. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mat. 16, 475–483 (2001). [CrossRef]
  32. P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro, “Spatial-field correlation: the building block of mesoscopic fluctuations,” Phys. Rev. Lett. 88, 123901 (2002). [CrossRef] [PubMed]
  33. V. Emiliani, F. Intonti, M. Cazayous, D. S. Wiersma, M. Colocci, F. Aliev, and A. D. Lagendijk, “Near-field, short range correlation in optical waves transmitted through random media,” Phys. Rev. Lett. 90, 250801 (2003). [CrossRef]
  34. P. A. Lee and A. D. Stone, “Universal conductance fluctuations in metals,” Phys. Rev. Lett. 55, 1622–1625 (1985). [CrossRef] [PubMed]
  35. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), p. 206.
  36. V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron. 16, 281–283 (1986). [CrossRef]
  37. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994). [CrossRef]
  38. S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999). [CrossRef]
  39. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999). [CrossRef]
  40. R. K. Thareja and A. Mitra, “Random laser action in ZnO,” Appl. Phys. B 71, 181–184 (2000). [CrossRef]
  41. B. Li, G. R. Williams, S. C. Rand, T. Hinklin, and R. M. Laine, “Continuous-wave ultraviolet laser action in strongly scattering Nd-doped alumina,” Opt. Lett. 27, 394–396 (2002). [CrossRef]
  42. H. F. Arnoldus and J. T. Foley, “Spatial separation of the traveling and evanescent parts of dipole radiation,” Opt. Lett. 28, 1299–1301 (2003). [CrossRef] [PubMed]
  43. C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited