OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 1 — Jan. 1, 2004
  • pp: 3–6

Two-species cold atomic beam

Nathan Lundblad, David C. Aveline, Robert J. Thompson, James M. Kohel, Jaime Ramirez-Serrano, William M. Klipstein, Daphna G. Enzer, Nan Yu, and Lute Maleki  »View Author Affiliations

JOSA B, Vol. 21, Issue 1, pp. 3-6 (2004)

View Full Text Article

Acrobat PDF (191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We generate a bright atomic beam containing laser-cooled rubidium and cesium, and we use this beam to load a mixed-species ultrahigh-vacuum (UHV) magneto-optical trap. We have characterized our two-species atomic beam over a range of operating conditions, and we obtain similar atom fluxes for each species. Within the UHV trap, interspecies inelastic collisions are observed in the form of enhanced decay rates of a given species in the presence of a second trapped species. We analyze the trap decays to obtain a loss rate due to heteronuclear cold collisions, and we compare our result to similar measurements in vapor-cell traps [Phys. Rev. A <b>63</b>, 033406 (2001)].

© 2004 Optical Society of America

OCIS Codes
(020.2070) Atomic and molecular physics : Effects of collisions
(020.7010) Atomic and molecular physics : Laser trapping
(140.3320) Lasers and laser optics : Laser cooling

Nathan Lundblad, David C. Aveline, Robert J. Thompson, James M. Kohel, Jaime Ramirez-Serrano, William M. Klipstein, Daphna G. Enzer, Nan Yu, and Lute Maleki, "Two-species cold atomic beam," J. Opt. Soc. Am. B 21, 3-6 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flemming, S. C. Zilio, and V. S. Bagnato, “Simultaneous trapping of two different atomic species in a vapor-cell magneto-optical trap,” Phys. Rev. A 52, R4340–R4343 (1995).
  2. G. D. Telles, L. G. Marcassa, S. R. Muniz, S. G. Miranda, A. Antunes, C. Westbrook, and V. S. Bagnato, “Inelastic cold collisions of a Na/Rb mixture in a magneto-optical trap,” Phys. Rev. A 59, R23–R26 (1999).
  3. J. P. Shaffer, W. Chalupczak, and N. P. Bigelow, “Trap loss in a two-species Na–Cs magneto-optical trap: Intramultiplet mixing in heteronuclear ultracold collisions,” Phys. Rev. A 60, R3365–R3368 (1999).
  4. U. Schlöder, H. Engler, U. Schünemann, R. Grimm, and M. Weidemüller, “Cold inelastic collisions between lithium and cesium in a two-species magneto-optical trap,” Eur. Phys. J. D 7, 331–340 (1999).
  5. Y. E. Young, R. Ejnisman, J. P. Shaffer, and N. P. Bigelow, “Heteronuclear hyperfine-state-changing cold collisions,” Phys. Rev. A 62, 055403 (2000).
  6. L. G. Marcassa, G. D. Telles, S. R. Muniz, and V. S. Bagnato, “Collisional losses in a K-Rb cold mixture,” Phys. Rev. A 63, 013413 (2001).
  7. G. D. Telles, W. Garcia, L. G. Marcassa, V. S. Bagnato, D. Ciampini, M. Fazzi, J. H. Müller, D. Wilkowski, and E. Arimondo, “Trap loss in a two-species Rb-Cs magneto-optical trap,” Phys. Rev. A 63, 033406 (2001).
  8. J. Goldwin, S. B. Papp, B. DeMarco, and D. S. Jin, “Two-species magneto-optical trap with 40K and 87Rb,” Phys. Rev. A 65, 021402(R) (2002).
  9. A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and R. G. Hulet, “Observation of Fermi pressure in a gas of trapped atoms,” Science 291, 2570–2572 (2001).
  10. B. DeMarco and D. S. Jin, “Onset of Fermi degeneracy in a trapped atomic gas,” Science 285, 1703–1706 (1999).
  11. R. Onofrio and C. Presilla, “Reaching Fermi degeneracy in two-species optical dipole traps,” Phys. Rev. Lett. 89, 100401 (2002).
  12. Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwierlein, A. Görlitz, and W. Ketterle, “Two-species mixture of quantum degenerate Bose and Fermi gases,” Phys. Rev. Lett. 88, 160401 (2002).
  13. G. Modugno, G. Roati, F. Riboli, F. Ferlaino, R. J. Brecha, and M. Inguscio, “Collapse of a degenerate Fermi gas,” Science 297, 2240–2243 (2002).
  14. B. C. Regan, E. D. Commins, C. J. Schmidt, and D. DeMille, “New limit on the electron electric dipole moment,” Phys. Rev. Lett. 88, 071805 (2002).
  15. D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecký, and C. D. Lane, “Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser,” Phys. Rev. Lett. 85, 5038–5041 (2000).
  16. J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
  17. K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single beam atom trap in a pyramidal and conical hollow mirror,” Opt. Lett. 21, 1177–1179 (1996).
  18. J. Kohel, J. Ramirez-Serrano, R. J. Thompson, L. Maleki, J. L. Bliss, and K. G. Libbrecht, “Generation of an intense cold atom beam from a pyramidal magneto-optical trap: Experiment and simulation,” J. Opt. Soc. Am. B 20, 1161–1168 (2003).
  19. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
  20. Detailed Monte-Carlo simulations of the CAB-loaded UHV MOT predict that the capture efficiency of cold atoms from the atomic beam by the UHV MOT is approximately 70 percent; this efficiency is limited primarily by the small (1 cm) diameter for the trapping laser beams.
  21. J. Ramirez-Serrano, W. DeGraffenreid, and J. Weiner, “Polarization-dependent spectra in the photoassociative ionization of cold atoms in a bright sodium beam,” Phys. Rev. A 65, 052719 (2002).
  22. J. Ramirez-Serrano, W. DeGraffenreid, J. Weiner, E. Tiesinga, and P. Julienne, “Beamloss spectroscopy of cold collisions in a bright sodium beam,” Phys. Rev. A (to be published).
  23. D. Sesko, T. Walker, C. Monroe, A. Gallagher, and C. Wieman, “Collisional losses from a light-force atom trap,” Phys. Rev. Lett. 63, 961–964 (1989).
  24. While the primary focus of Ref. 7 was the study of Rb trap losses from cold collisions with Cs, the authors mention that they also measured a value for βCs-Rb that was twenty times lower than the corresponding value for βRb-Cs. We are uncertain as to whether this result is actually inconsistent with ours, as the trap parameters were not specified for their measurement.
  25. See http://funphysics.jpl.nasa.gov/technical/library/pi-list.html.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited