OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 1 — Jan. 1, 2004
  • pp: 45–56

Experimental and theoretical analysis of white-light seeded, collinear phase-matching, femtosecond optical parametric amplifiers

Jiun-Cheng Wang and Juen-Kai Wang  »View Author Affiliations

JOSA B, Vol. 21, Issue 1, pp. 45-56 (2004)

View Full Text Article

Acrobat PDF (401 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a high-power, kilohertz, collinear phase-matching ultrafast optical parametric amplifier (OPA) that is capable of producing 70-μJ, ~150-fs infrared laser pulses at wavelengths ranging from 2.9 to 4.0 μm. The OPA system was seeded with a broadband white-light continuum, which was carefully characterized experimentally. The retrieved electric field of the white-light seed pulse was incorporated in a simulation. The simulated results almost perfectly matched the experimental results of our OPA system. We used the simulation further to investigate the interplay between material dispersion and optical nonlinearity in ultrafast OPA systems and to examine the role of white-light seed pulses in such systems.

© 2004 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

Jiun-Cheng Wang and Juen-Kai Wang, "Experimental and theoretical analysis of white-light seeded, collinear phase-matching, femtosecond optical parametric amplifiers," J. Opt. Soc. Am. B 21, 45-56 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. A. Reider and T. F. Heinz, “Second-order nonlinear optical effects at surfaces and interfaces: recent advances,” in Photonic Probes of Surfaces, P. Halevi, ed. (North-Holland, Amsterdam, 1995), pp. 413–478.
  2. Y. R. Shen, “Sum frequency generation for vibrational spectroscopy: applications to water interfaces and films of water and ice,” Solid State Commun. 108, 399–406 (1998), and references therein.
  3. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  4. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
  5. V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A: Pure Appl. Opt. 3, R1–R19 (2001).
  6. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, and R. Righini, “Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222–2232 (1993).
  7. M. K. Reed, M. K. Steiner-Shepard, M. S. Armas, and D. K. Negus, “Microjoule-energy ultrafast optical parametric amplifiers,” J. Opt. Soc. Am. B 12, 2229–2236 (1995).
  8. K. R. Wilson and V. V. Yakovlev, “Ultrafast rainbow: tunable ultrashort pulses from a solid-state kilohertz system,” J. Opt. Soc. Am. B 14, 444–448 (1997).
  9. V. Petrov, F. Noack, and R. Stolzenberger, “Seeded femtosecond optical parametric amplification in the mid-infrared spectral region above 3 μm,” Appl. Opt. 36, 1164–1172 (1997).
  10. G. M. Gale, G. Gallot, F. Hache, and R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid-infrared,” Opt. Lett. 22, 1253–1255 (1997).
  11. U. Emmerichs, S. Wouterson, and H. J. Bakker, “Generation of intense femtosecond optical pulses near 3 μm with a kilohertz repetition rate,” J. Opt. Soc. Am. B 14, 1480–1483 (1997).
  12. S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analy-sis and comparison,” Appl. Phys. B (Suppl.) 70, S247–S252 (2000), and references therein.
  13. M. Nisoli, S. Stagira, S. De Slivestri, O. Svelto, G. Valiulis, and A. Varanavicius, “Parametric generation of high-energy 14.5-fs light pulses at 1.5 μm,” Opt. Lett. 23, 630–632 (1998).
  14. S. R. Greenfield and M. R. Wasielewski, “Near-transform-limited visible and near-IR femtosecond pulses from optical parametric amplification using type II β-barium borate,” Opt. Lett. 20, 1394–1396 (1995).
  15. D. E. Gragson, D. S. Alavi, and G. L. Richmond, “Tunable infrared laser system based on parametric amplification in KTP with a Ti:sapphire amplifier,” Opt. Lett. 20, 1991–1993 (1995).
  16. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
  17. S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
  18. H. J. Bakker, P. C. M. Planken, and H. G. Muller, “Numerical calculation of optical frequency-conversion processes: a new approach,” J. Opt. Soc. Am. B 6, 1665–1672 (1989), and references therein.
  19. G. M. Gale, M. Cavallari, and F. Hache, “Femtosecond visible optical parametric oscillator,” J. Opt. Soc. Am. B 15, 702–714 (1998).
  20. G. M. Gale, F. Hache, and M. Cavallari, “Broad-bandwidth parametric amplification in the visible: femtosecond experiments and simulations,” IEEE J. Sel. Top. Quantum Electron. 4, 224–229 (1998).
  21. S. Reisner and M. Gutmann, “Numerical treatment of UV-pumped, white-light-seeded single-pass noncollinear parametric amplifiers,” J. Opt. Soc. Am. B 16, 1801–1813 (1999).
  22. D. Pang, R. Zhang, and Q. Wang, “Theoretical analysis of noncollinear phase-matched optical parametric amplifier seeded by a white-light continuum,” Opt. Commun. 196, 293–298 (2001).
  23. J.-C. Wang and J.-K. Wang, “Femtosecond optical parametric amplifiers with collinear phase matching: experiments and full simulation,” presented at the Photonics West, Lasers and Applications in Sciences and Engineering Symposium, San Jose, Calif., January 25–31, 2003.
  24. W. Plass, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV and IR pulses,” Appl. Phys. B 54, 199–201 (1992).
  25. E. J. Canto-Said, P. Simon, C. Jordan, and G. Marowsky, “Surface second-harmonic generation in Si(111) for autocor-relation measurements of 248-nm femtosecond pulses,” Opt. Lett. 18, 2038–2040 (1993).
  26. H. P. Li, C. H. Kam, Y. L. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4 crystals in the femtosecond regime,” Appl. Phys. B 70, 385–388 (2000).
  27. D. L. Fenimore, K. L. Schepler, U. B. Ramabadran, and S. R. McPherson, “Infrared corrected Sellmeier coefficients for potassium titanyl arsenate,” J. Opt. Soc. Am. B 12, 794–796 (1995).
  28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, New York, 1992).
  29. P. Hamm, R. A. Kaindl, and J. Stenger, “Noise suppression in femtosecond mid-infrared light sources,” Opt. Lett. 25, 1798–1800 (2000).
  30. R. R. Alfano, The Supercontinuum Laser Source (Springer-Verlag, New York, 1989).
  31. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
  32. G. Yang and Y. R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium,” Opt. Lett. 9, 510–512 (1984).
  33. S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Amplitude and phase measurements of femtosecond pulse splitting in nonlinear dispersive media,” Opt. Lett. 23, 379–381 (1998).
  34. J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Quantum Electron. 8, 651–659 (2002).
  35. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
  36. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: Simulations and experiments,” Opt. Express 10, 1215–1221 (2002), http://www.opticsexpress.org.
  37. W. L. Wolfe and G. J. Zissis, The Infrared Handbook (Environmental Research Institute of Michigan, Detroit, Mich., 1993).
  38. M. Nisoli, S. De Slivestri, V. Magni, O. Svelto, R. Danielius, A. Piskarskas, G. Valiulis, and A. Varanavicius, “Highly efficient parametric conversion of femtosecond Ti:sapphire laser pulses at 1 kHz,” Opt. Lett. 19, 1973–1975 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited