OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 1 — Jan. 1, 2004
  • pp: 7–17

Spectrally adaptive infrared photodetectors with bias-tunable quantum dots

Ünal Sakoğlu, J. Scott Tyo, Majeed M. Hayat, Sunil Raghavan, and Sanjay Krishna  »View Author Affiliations

JOSA B, Vol. 21, Issue 1, pp. 7-17 (2004)

View Full Text Article

Acrobat PDF (1178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantum-dot infrared photodetectors (QDIPs) exhibit a bias-dependent shift in their spectral response. In this paper, a novel signal-processing technique is developed that exploits this bias-dependent spectral diversity to synthesize measurements that are tuned to a wide range of user-specified spectra. The technique is based on two steps: The desired spectral response is first optimally approximated by a weighted superposition of a family of bias-controlled spectra of the QDIP, corresponding to a preselected set of biases. Second, multiple measurements are taken of the object to be probed, one for each of the prescribed biases, which are subsequently combined linearly with the same weights. The technique is demonstrated to produce a unimodal response that has a tunable FWHM (down to Δλ~0.5 μm) for each center wavelength in the range 3–8 μm, which is an improvement by a factor of 4 over the spectral resolution of the raw QDIP.

© 2004 Optical Society of America

OCIS Codes
(020.6580) Atomic and molecular physics : Stark effect
(040.0040) Detectors : Detectors
(040.3060) Detectors : Infrared
(040.5570) Detectors : Quantum detectors
(040.6070) Detectors : Solid state detectors
(160.6000) Materials : Semiconductor materials
(280.0280) Remote sensing and sensors : Remote sensing and sensors

Ünal Sakoğlu, J. Scott Tyo, Majeed M. Hayat, Sunil Raghavan, and Sanjay Krishna, "Spectrally adaptive infrared photodetectors with bias-tunable quantum dots," J. Opt. Soc. Am. B 21, 7-17 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. M. Arias, M. Zandian, J. G. Pasko, J. Bajaj, L. J. Kozlowski, W. E. Tennant, and R. E. DeWames, “MBE HgCdTe infrared focal plane array (IRFPA) flexible manufacturing,” in Infrared Detectors: State of the Art II, R. E. Longshore, ed., Proc. SPIE 2274, 2–16 (1994).
  2. P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadjian, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184–185, 1262–1271 (1998).
  3. J. M. Arias, M. Zandian, J. Bajaj, J. G. Pasko, L. O. Bubulac, S. H. Shin, and R. E. DeWarnes, “Molecular beam epitaxy HgCdTe growth-induced void defects and their effect on infrared photodiodes,” J. Electron. Mater. 24, 521–524 (1995).
  4. R. M. Biefeld, J. R. Wendt, and S. R. Kurtz, “Improving the performance of InAs1−xSbx/InSb infrared detectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 107, 836–839 (1991).
  5. M. H. Young, D. H. Chow, A. T. Hunter, and R. H. Miles, “Recent advances in Ga1−xInxSb/InAs superlattice IR detector materials,” Appl. Surf. Sci. 123–124, 395–399 (1998).
  6. L. West and S. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
  7. B. F. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).
  8. A. C. Goldberg, J. W. Little, S. W. Kennerly, D. W. Beekman, and R. P. Leavitt, “Temperature dependence of the responsivity of quantum well infrared photodetectors,” in Proceedings of 6th International Symposium on LWIR Detectors and Arrays: Physics and Applications, S. S. Li, M. Z. Tidrow, S. D. Gunapala, and H. C. Liu, eds. (Electrochemical Society, Boston, Mass., 1999), Vol. 98–21, pp. 122–123.
  9. C. J. Chen, K. K. Choi, W. H. Chang, and D. C. Tsui, “Two-color corrugated quantum-well infrared photodetector for remote temperature sensing,” Appl. Phys. Lett. 72, 7–9 (1998).
  10. S. D. Gunapala and K. M. S. V. Bandara, “Recent developments in quantum well infrared photodetectors,” in Thin Films, M. H. Francombe and J. L. Vossen, eds. (Academic, New York, 1995), pp. 113–237.
  11. M. Z. Tidrow, J. C. Chirefllang, S. S. Li, and K. Bacher, “A high strain two-stack two-color quantum well infrared photodetector,” Appl. Phys. Lett. 70, 859–861 (1997).
  12. V. Ryzhii, I. Khmyrova, V. Mitin, M. Stroscio, and M. Willander, “On the detectivity of quantum-dot infrared photodetectors,” Appl. Phys. Lett. 78, 3523–3525 (2001).
  13. M. A. Kinch, “Fundamental physics of infrared detector materials,” J. Electron. Mater. 29, 809–817 (2000).
  14. A. Rogalski, “Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long wavelength focal plane arrays,” Infrared Phys. Technol. 40, 279–294 (1999).
  15. J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35, 936–943 (1999).
  16. H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78, 79–81 (2001).
  17. S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ~ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81, 1369–1371 (2002), and references therein.
  18. P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, “Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors,” J. Cryst. Growth 227, 27–35 (2001).
  19. P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, “Quantum dot carrier dynamics and far-infrared devices,” in Optoelectronic Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84–89 (2000).
  20. V. Ryzhii, M. Ershov, I. Khmyrova, M. Ryzhii, and T. Iizuka, “Multiple quantum-dot infrared phototransistors,” Physica B 227, 17–20 (1996).
  21. M. R. Descour, C. E. Volin, E. L. Dereniak, T. M. Gleeson, M. F. Hopkins, D. W. Wilson, and P. D. Maker, “Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser,” Appl. Opt. 36, 3694–3698 (1997).
  22. A. C. Goldberg, T. Fischer, and Z. I. Derzko, “Application of dual band infrared focal plane arrays to tactical and strategic military problems,” in Infrared Technology and Applications XVIII, B. Andersen, G. F. Fulop, and M. Stronik, eds., Proc. SPIE 4480, 500–514 (2002).
  23. F. E. Prins, G. Lehr, M. Burkad, S. Nikitin, H. Schweizer, and G. Smith, “Quantum dots and quantum wires with high optical quality by implantation-induced intermixing,” Jpn. J. Appl. Phys., Part 1 32, 6228–6232 (1993).
  24. D. Bimberg, M. Grundmann, and N. N. Ledenstov, Quantum Dot Heterostructures, 1st ed. (Wiley, New York, 1999).
  25. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (2000), and references therein.
  26. E.-T. Kim, Z. Chen, and A. Madhukar, “Selective manipulation of InAs quantum dot electronic states using a lateral potential confinement layer,” Appl. Phys. Lett. 81, 3473–3475 (2002).
  27. S. Krishna, P. Rotella, S. Raghavan, A. Stintz, M. M. Hayat, S. J. Tyo, and S. W. Kennerly, “Bias-dependent tunable response of normal incidence long wave infrared quantum dot detectors,” in Proceedings of IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 754–755.
  28. H. Stark and J. Woods, Probability and Random Processes with Applications to Signal Processing, 3rd ed. (Prentice-Hall, Englewood Cliffs, N.J., 2002).
  29. J. Luenberger, Optimization by Vector Space Methods (Wiley, New York, 1967).
  30. P. Rotella, S. Raghavan, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. Le, and S. W. Kennerly, “Normal incidence InAs/InGaAs dots-in-well detectors with current blocking AlGaAs layer,” J. Cryst. Growth 251, 787–793 (2003).
  31. G. V. Winckel and S. Krishna, “A theoretical model for bias dependent shift of absorption spectra in quantum well infrared photodetectors,” in Proceedings of IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 756–757.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited