Analytical results for model describing interactions among three bosonic modes
JOSA B, Vol. 21, Issue 1, pp. 73-78 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000073
Enhanced HTML Acrobat PDF (147 KB)
Abstract
We present exact analytical expressions of all the energy eigenstates and eigenvalues in terms of an unknown parameter λ for the model describing interactions among three bosonic modes without using the assumption of the Bethe anzatz. We also derive the explicit expression of a polynomial whose roots give the concrete values of the parameter λ.
© 2004 Optical Society of America
OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.7070) Nonlinear optics : Two-wave mixing
(270.4180) Quantum optics : Multiphoton processes
Citation
Ying Wu and Xiaoxue Yang, "Analytical results for model describing interactions among three bosonic modes," J. Opt. Soc. Am. B 21, 73-78 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-1-73
Sort: Year | Journal | Reset
References
- Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1985).
- M. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, Cambridge, UK, 1997).
- D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).
- L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902/1–4 (2002). [CrossRef] [PubMed]
- Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811/1–5 (2003). [CrossRef]
- L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Four-wave mixing with matter waves,” Nature 398, 218–220 (1999). [CrossRef]
- M. Trippenbach, Y. B. Band, and P. S. Julienne, “Four-wave mixing in the scattering of Bose–Einstein condensates,” Opt. Express 3, 530–537 (1998). [CrossRef] [PubMed]
- E. V. Goldstein and P. Meystre, “Phase conjugation of multicomponent Bose–Einstein condensates,” Phys. Rev. A 59, 1509–1513 (1999). [CrossRef]
- Y. Wu, X. Yang, C. P. Sun, X. J. Zhou, and Y. Q. Wang, “Theory of four-wave mixing with matter waves without the undepleted pump approximation,” Phys. Rev. A 61, 043604/1–6 (2000). [CrossRef]
- P. Villain, P. Ohberg, L. Santos, A. Sanpera, and M. Lewenstein, “Four-wave mixing in degenerate atomic gases,” Phys. Rev. A 64, 023606/1–5 (2001). [CrossRef]
- J. Heurich, H. Pu, M. G. Moore, and P. Meystre, “Instabilities and self-oscillations in atomic four-wave mixing,” Phys. Rev. A 63, 033605/1–7 (2001). [CrossRef]
- M. G. Moore and P. Meystre, “Atomic four-wave mixing: fermions versus bosons,” Phys. Rev. Lett. 86, 4199–4202 (2001). [CrossRef] [PubMed]
- W. Ketterle and S. Inouye, “Does matter wave amplification work for fermions?,” Phys. Rev. Lett. 86, 4203–4206 (2001). [CrossRef] [PubMed]
- J. M. Vogels, K. Xu, and W. Ketterle, “Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose–Einstein condensates,” Phys. Rev. Lett. 89, 020401/1–4 (2002). [CrossRef]
- Q. Yang, J. T. Seo, S. Greekmore, D. A. Temple, P. Ye, C. Bonner, M. Namkung, S. S. Jung, and J. H. Kim, “Nonlinear phase mismatch and optimal input combination in atomic four-wave mixing in Bose–Einstein condensates,” Phys. Rev. A 67, 013603/1–7 (2003). [CrossRef]
- Y. Wu and X. Yang, “Quantum theory for micro-cavity enhancement of second-harmonic generation,” J. Phys. B 34, 2281–2288 (2001). [CrossRef]
- S. Lettieri, S. D. Finizio, P. Maddalena, V. Ballarini, and F. Giogis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81, 4706–4708 (2002). [CrossRef]
- M. K. Olsen, V. I. Kruglov, and M. J. Collett, “Effects of χ^{(3)} nonlinearities in second-harmonic generation,” Phys. Rev. A 63, 033801/1–7 (2001). [CrossRef]
- A. B. Klimov, L. L. Sánchez-Soto, and J. Delgado, “Mimicking a Kerrlike medium in the dispersive regime of second-harmonic generation,” Opt. Commun. 191, 419–426 (2001). [CrossRef]
- C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, “Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy,” Opt. Lett. 28, 713–715 (2003). [CrossRef] [PubMed]
- A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28, 716–718 (2003). [CrossRef] [PubMed]
- X. X. Yang and Y. Wu, “Coherent superposition states of atoms and molecules in a Bose–Einstein condensate with exactly balanced photoassociations and photodissociations,” Chin. Phys. Lett. 20, 189–191 (2003). [CrossRef]
- Y. Wu and X. Yang, “Exact eigenstates for a class of models describing two-mode multiphoton processes,” Opt. Lett. 28, 1793–1795 (2003). [CrossRef] [PubMed]
- V. A. Andreev and O. A. Ivanova, “Symmetries and reduced systems of equations for three-boson and four-boson interactions,” J. Phys. A 35, 8587–8602 (2002). [CrossRef]
- G. Alvarez and R. F. Alvarez-Estrada, “Third harmonic generation as a third-order quasi-exactly solvable system,” J. Phys. A 34, 10045–10056 (2001). [CrossRef]
- Y. Wu, X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett. 24, 345–347 (1999). [CrossRef]
- Y. Wu, L. Wen, and Y. Zhu, “Efficient hyper-Raman scattering in resonant coherent media,” Opt. Lett. 28, 631–633 (2003). [CrossRef] [PubMed]
- V. P. Karassiov, “G-invariant polynomial extensions of Lie algebras in quantum many-body physics,” J. Phys. A 27, 153–165 (1994). [CrossRef]
- Y. Wu, X. Yang, and Y. Xiao, “Analytical method for yrast line states in interacting Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2200–2203 (2001). [CrossRef] [PubMed]
- Y. Wu and X. Yang, “Analytical results for energy spectrum and eigenstates of Bose–Einstein condensate in Mott insulator state,” Phys. Rev. A 68, 013608/1–7 (2003). [CrossRef]
- M. Alexanian and S. K. Bose, “Unitary transformation and the dynamics of a three-level atom interacting with two quantized field modes,” Phys. Rev. A 52, 2218–2224 (1995). [CrossRef] [PubMed]
- Y. Wu, “Effective Raman theory for a three-level atom in the Λ configuration,” Phys. Rev. A 54, 1586–1592 (1996). [CrossRef] [PubMed]
- Y. Wu and X. Yang, “Effective two-level model for a three-level atom in the Ξ configuration,” Phys. Rev. A 56, 2443–2446 (1997). [CrossRef]
- M. Alexanian and S. K. Bose, “Comment on ‘Generation of phase states by two-photon absorption’,” Phys. Rev. Lett. 85, 1136 (2000). [CrossRef]
- M. Alexanian, S. K. Bose, and L. Chow, “Trapping and photon number states in a two-photon micromaser,” J. Lumin. 76–77, 677–680 (1998). [CrossRef]
- M. Alexanian and S. K. Bose, “Generation of photonic superposition states by two-photon absorption,” J. Lumin. 94, 815–819 (2001). [CrossRef]
- M. Nielsen and I. Chuang, Quantum Computation and Quantum Communication (Cambridge University, Cambridge, UK, 2000).
- L. You, “Creating maximally entangled atomic states in a Bose–Einstein condensate,” Phys. Rev. Lett. 90, 030402/1–4 (2003). [CrossRef]
- H. Pu and P. Meystre, “Creating macroscopic atomic Einstein–Podolsky–Rosen states from Bose–Einstein condensates,” Phys. Rev. Lett. 85, 3987–3990 (2000). [CrossRef] [PubMed]
- L.-M. Duan, A. Sorensen, J. I. Cirac, and P. Zoller, “Squeezing and entanglement of atomic beams,” Phys. Rev. Lett. 85, 3991–3994 (2000). [CrossRef] [PubMed]
- M. Alexanian, “Cavity coherent-state cloning via Raman scattering,” Phys. Rev. A 67, 033809/1–6 (2003). [CrossRef]
- C. W. Gardiner, “Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross–Pitaevskii equation for a highly condensed Bose gas,” Phys. Rev. A 56, 1414–1423 (1997). [CrossRef]
- M. D. Girardeau, “Comment on ‘Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross–Pitaevskii equation for a highly condensed Bose gas’,” Phys. Rev. A 58, 775–778 (1998). [CrossRef]
- Y. Castin and R. Dum, “Low-temperature Bose–Einstein condensates in time-dependent traps: Beyond the U(1) symmetry-breaking approach,” Phys. Rev. A 57, 3008–3021 (1998). [CrossRef]
- Liwei Wang, R. R. Puri, and J. H. Eberly, “Coupled-channel cavity QED model and exact solutions,” Phys. Rev. A 46, 7192–7209 (1992). [CrossRef] [PubMed]
- Y. Wu, “Simple algebraic method to solve a coupled-channel cavity QED model,” Phys. Rev. A 54, 4534–4543 (1996). [CrossRef] [PubMed]
- X. Yang, Y. Wu, and Y. Li, “A unified and standardized procedure to solve various nonlinear Jaynes–Cummings models,” Phys. Rev. A 55, 4545–4551 (1997). [CrossRef]
- I. P. Vadeiko, G. P. Miroshnichenko, A. V. Rybin, and J. Timonen, “Algebraic approach to the Tavis–Cummings problem,” Phys. Rev. A 67, 053808/1–12 (2003). [CrossRef]
- C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spins in spinor Bose–Einstein condensates,” Phys. Rev. Lett. 81, 5257–5261 (1998). [CrossRef]
- H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Bigelow, “Spin-mixing dynamics of a spinor Bose–Einstein condensate,” Phys. Rev. A 60, 1463–1470 (1999). [CrossRef]
- M. Koashi and M. Ueda, “Exact eigenstates and magnetic response of spin-1 and spin-2 Bose–Einstein condensates,” Phys. Rev. Lett. 84, 1066–1069 (2000). [CrossRef] [PubMed]
- S. Raghavan, H. Pu, C. K. Law, J. H. Eberly, and N. P. Bigelow, “Properties of spinor Bose condensates,” J. Low Temp. Phys. 119, 437–460 (2000). [CrossRef]
- O. E. Müstecaplioǧlu, M. Zhang, and L. You, “Spin squeezing and entanglement in spinor condensates,” Phys. Rev. A 66, 033611/1–9 (2002). [CrossRef]
- Y. Wu, X. Yang, and C. Sun, “Systematical method to study general structure of Bose–Einstein condensates with arbitrary spin,” Phys. Rev. A 62, 063603/1–4 (2000). [CrossRef]
- Y. Wu and X. Yang, “Algebraic method for solving a class of coupled-channel cavity QED models,” Phys. Rev. A 63, 043816/1–5 (2001). [CrossRef]
- T. Papenbrock, “Universal solutions for interacting bosons in one-dimensional harmonic traps,” Phys. Rev. A 65, 063606/1–5 (2002). [CrossRef]
- R. Franzosi and V. Penna, “Spectral properties of coupled Bose–Einstein condensates,” Phys. Rev. A 63, 043609/1–8 (2001). [CrossRef]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.