OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 1 — Jan. 1, 2004
  • pp: 88–95

Frequency measurements and hyperfine structure of the R(85)33–0 transition of molecular iodine with a femtosecond optical comb

Feng-Lei Hong, Scott Diddams, Ruixiang Guo, Zhi-Yi Bi, Atsushi Onae, Hajime Inaba, Jun Ishikawa, Kenichiro Okumura, Daigo Katsuragi, Junji Hirata, Tadao Shimizu, Takayuki Kurosu, Yasuki Koga, and Hirokazu Matsumoto  »View Author Affiliations


JOSA B, Vol. 21, Issue 1, pp. 88-95 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000088


View Full Text Article

Acrobat PDF (214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Absolute frequency measurements of the R(85)33–0 transition of molecular iodine at the blue end of the tuning range of a frequency-doubled Nd:YAG laser are implemented with a femtosecond optical comb based on a mode-locked Ti:sapphire laser. The hyperfine structure of the R(85)33–0 transition is observed by use of high-resolution laser spectroscopy and is measured by the femtosecond optical comb. The observed hyperfine transitions are good frequency references for both frequency-doubled Nd:YAG and Nd:YVO4 lasers in the 532-nm region. High-accuracy hyperfine constants are obtained by our fitting the measured hyperfine splittings to a four-term Hamiltonian, which includes the electric quadrupole, spin–rotation, tensor spin–spin, and scalar spin–spin interactions.

© 2004 Optical Society of America

OCIS Codes
(020.2930) Atomic and molecular physics : Hyperfine structure
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6390) Spectroscopy : Spectroscopy, molecular
(320.7160) Ultrafast optics : Ultrafast technology

Citation
Feng-Lei Hong, Scott Diddams, Ruixiang Guo, Zhi-Yi Bi, Atsushi Onae, Hajime Inaba, Jun Ishikawa, Kenichiro Okumura, Daigo Katsuragi, Junji Hirata, Tadao Shimizu, Takayuki Kurosu, Yasuki Koga, and Hirokazu Matsumoto, "Frequency measurements and hyperfine structure of the R(85)33–0 transition of molecular iodine with a femtosecond optical comb," J. Opt. Soc. Am. B 21, 88-95 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-1-88


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
  2. F.-L. Hong, J. Ishikawa, K. Sugiyama, A. Onae, H. Matsumoto, J. Ye, and J. L. Hall, “Comparison of independent optical frequency measurements using a portable iodine-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 52, 240–244 (2003).
  3. A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthire, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
  4. L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, and L.-S. Ma, “International comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the NRLM and the BNM–INM, October 2000,” Metrologia 38, 567–572 (2001).
  5. S. Picard, L. Robertsson, L.-S. Ma, K. Nyholm, M. Merimaa, T. E. Ahola, P. Balling, P. Křen, and J.-P. Wallerand, “Comparison of 127I2-stabilized frequency-doubled Nd:YAG laser at the Bureau International des Poids et Mesures,” Appl. Opt. 42, 1019–1028 (2003).
  6. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
  7. K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyusarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
  8. A. Arie and R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
  9. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
  10. F.-L. Hong and J. Ishikawa, “Hyperfine structures of the R(122)35–0 and P(84)33–0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
  11. F.-L. Hong, J. Ishikawa, A. Onae, and H. Matsumoto, “Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127I2,” J. Opt. Soc. Am. B 18, 1416–1422 (2001).
  12. F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Vibration dependence of the tensor spin–spin and scalar spin–spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm,” J. Opt. Soc. Am. B 19, 946–953 (2002).
  13. F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Hyperfine structure and absolute frequency determination of the R(121)35–0 and P(142)37–0 transitions of 127I2 near 532 nm,” Opt. Commun. 212, 89–95 (2002).
  14. Y. Zhang, J. Ishikawa, and F.-L. Hong, “Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator,” Opt. Commun. 200, 209–215 (2001).
  15. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
  16. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
  17. M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63–64 (1999).
  18. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
  19. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
  20. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
  21. J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
  22. F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé, and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
  23. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (1999).
  24. G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982).
  25. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
  26. F.-L. Hong, J. Ishikawa, Z.-Y. Bi, J. Zhang, A. Onae, and J. Yoda, “A portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50, 486–489 (2001).
  27. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
  28. F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
  29. F.-L. Hong, Y. Zhang, J. Ishikawa, Y. Bitou, A. Onae, J. Yoda, and H. Matsumoto, “Frequency reproducibility of I2-stabilized Nd:YAG lasers,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall and J. Ye, eds., Proc. SPIE 4269, 143–154 (2001).
  30. F.-L. Hong, J. Ishikawa, Z.-Y. Bi, J. Zhang, A. Onae, and J. Yoda, “A portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50, 486–489 (2001).
  31. N. Shen, E. J. Zang, H. Cao, K. Zhao, H. Lu, X. Zhang, Y. Sun, C. Xu, X. Chen, K. Zhang, and X. Bai, “Modulation transfer spectroscopy of 127I2 hyperfine structure near 532nm using a self-made diode-pumped Nd:VVO4-KTP laser,” IEEE Trans. Instrum. Meas. 48, 604–607 (1999).
  32. H. J. Foth and F. Spieweck, “Hyperfine structure of the R(98), 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
  33. Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I-Main resonances,” J. Physique 42, 1393–1411 (1981).
  34. S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
  35. Ch. J. Bordé, F. Du Burck, and A. N. Goncharov, “A new accurate fit of the hyperfine structure of molecular iodine,” in Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 524–526.
  36. J. L. Hall and C. J. Bordé, “Shift and broadening of saturation absorption resonances due to curvature of the laser wave fronts,” Appl. Phys. Lett. 29, 788–790 (1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited