OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 1722–1731

Characteristics of DuPont photopolymers for slanted holographic grating formations

Shun-Der Wu and Elias N. Glytsis  »View Author Affiliations

JOSA B, Vol. 21, Issue 10, pp. 1722-1731 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (257 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The characteristic parameters of DuPont OmniDex613 photopolymers including the shrinkage factor, diffusion coefficient, and nonlocal response length are studied for slanted holographic gratings recorded at the UV wavelength of 363.8 nm by application of the rigorous coupled-wave analysis in conjunction with an angular-selectivity measurement, a real-time diffraction-monitoring technique, and a nonlocal diffusion model. Both small (<20 deg) and large (>40 deg) slant-angle gratings are presented. Depending on the exposure intensity, the recording shrinkage factor of the photopolymer varies from ∼2.75% to ∼4.20%. Furthermore, the effects of postbaking conditions on the refractive-index modulations and the shifts of Bragg angles for slanted holographic gratings are also investigated systematically. It is found that the postbaking processing can not only increase the refractive-index modulations from Δn10.013 to ∼0.028 for a small slant-angle grating and from Δn10.011 to ∼0.022 for a large slant-angle grating, but can also compensate the recording shrinkage.

© 2004 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(050.7330) Diffraction and gratings : Volume gratings
(090.2900) Holography : Optical storage materials

Shun-Der Wu and Elias N. Glytsis, "Characteristics of DuPont photopolymers for slanted holographic grating formations," J. Opt. Soc. Am. B 21, 1722-1731 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Huang and P. R. Ashley, “Holographic Bragg grating input–output couplers for polymer waveguides at an 850-nm wavelength,” Appl. Opt. 36, 1198–1203 (1997). [CrossRef] [PubMed]
  2. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design, fabrication, and performance of preferential-order volume grating waveguide couplers,” Appl. Opt. 39, 1223–1232 (2000). [CrossRef]
  3. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design of a high-efficiency volume grating coupler for line focusing,” Appl. Opt. 37, 2278–2287 (1998). [CrossRef]
  4. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Volume grating preferential-order focusing waveguide coupler,” Opt. Lett. 24, 1708–1710 (1999). [CrossRef]
  5. H. J. Zhou, V. Morozov, and J. Neff, “Characterization of DuPont photopolymers in infrared light for free-space optical interconnects,” Appl. Opt. 34, 7457–7459 (1995). [CrossRef] [PubMed]
  6. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996). [CrossRef] [PubMed]
  7. G. Zhang, G. Montemezzani, and P. Günter, “Narrow-bandwidth holographic reflection filters with photopolymer films,” Appl. Opt. 40, 2423–2427 (2001). [CrossRef]
  8. U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993). [CrossRef]
  9. S. Piazzolla and B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 21, 1075–1077 (1996). [CrossRef] [PubMed]
  10. S. Piazzolla and B. K. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147–1157 (2000). [CrossRef]
  11. J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651–1657 (1999). [CrossRef]
  12. U. S. Rhee, H. J. Caulfield, C. S. Vikram, and J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995). [CrossRef] [PubMed]
  13. R. K. Kostuk, “Dynamic hologram recording characteristics in DuPont photopolymers,” Appl. Opt. 38, 1357–1363 (1999). [CrossRef]
  14. S.-D. Wu and E. N. Glytsis, “Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis,” J. Opt. Soc. Am. B 20, 1177–1188 (2003). [CrossRef]
  15. G. Zhao and P. Mouroulis, “Diffusion model of holographic formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994). [CrossRef]
  16. G. Zhao and P. Mouroulis, “Extension of diffusion model of holographic photopolymer,” J. Mod. Opt. 42, 2571–2573 (1995). [CrossRef]
  17. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997). [CrossRef]
  18. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000). [CrossRef]
  19. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material parameter estimation using a nonlocal diffusion based model,” J. Appl. Phys. 90, 3142–3148 (2001). [CrossRef]
  20. J. T. Sheridan, M. Downey, and F. T. O’Neill, “Diffusion-based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. 3, 477–488 (2001).
  21. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytical nonlocal diffusion model,” Appl. Opt. 41, 845–852 (2002). [CrossRef]
  22. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002). [CrossRef]
  23. B. M. Monroe, W. K. Smothers, D. E. Keys, R. R. Kerbs, D. J. Mickish, A. F. Harrington, S. R. Schicker, M. K. Armstrong, D. M. T. Chan, and C. I. Weathers, “Improved photopolymers for holographic grating. I. Imaging properties,” J. Imaging Sci. 35, 19–25 (1991).
  24. W. S. Colburn and K. A. Hanies, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971). [CrossRef] [PubMed]
  25. J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, and V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39, 2353–2358 (2000). [CrossRef]
  26. V. Moreau, Y. Renotte, and Y. Lion, “Planar-integrated interferometric sensor with holographic gratings,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, and R. L. Sutherland, eds., SPIE Proc. 3951, 108–115 (2000). [CrossRef]
  27. V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41, 3427–3435 (2002). [CrossRef] [PubMed]
  28. J.-H. Chen, D.-C. Su, and J.-C. Su, “Shrinkage- and refractive-index shift-corrected volume holograms for optical interconnects,” Appl. Phys. Lett. 81, 1387–1389 (2002). [CrossRef]
  29. D. W. Diehl and N. George, “Holographic interference filters for infrared communications,” Appl. Opt. 42, 1203–1210 (2003). [CrossRef] [PubMed]
  30. C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997). [CrossRef]
  31. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998). [CrossRef]
  32. H. J. Eichler, S. Orlic, P. Kuemmel, and B. Schupp, “Multiplexed microholograms for optical data storage,” in Diffractive and Holographic Technologies, Systems, and Spatial Light Modulators VI, I. Cindrich, S. H. Lee, and R. L. Sutherland, eds., Proc. SPIE 3633, 14–25 (1999). [CrossRef]
  33. H. Kogelnik, “Coupled wave theory for think holographic gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  34. T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985). [CrossRef]
  35. International Mathematics and Statistics Library, IMSL Math/Library, User’s Manual, Ver. 1.0 (IMSL, Inc., Houston, Tex., 1987), pp. 847–858.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited