OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 1740–1748

Secondary energy transfer and nonparticipatory Yb3+ ions in Er3+-Yb3+ high-power amplifier fibers

George A. Sefler, W. Daniel Mack, George C. Valley, and Todd S. Rose  »View Author Affiliations


JOSA B, Vol. 21, Issue 10, pp. 1740-1748 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001740


View Full Text Article

Acrobat PDF (383 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The energy exchange processes within Er3+–Yb3+-codoped silica fibers manufactured for high-power optical amplifiers are investigated through luminescent decay measurements and rate-equation modeling. The Er3+ and Yb3+ luminescence, as functions of pump power, exhibit an unquenchable Yb3+ to Er3+ cooperative energy transfer (CET) that does not subside with saturation of the Er3+ inversion. Consistent with the experimental results is the occurrence of secondary energy transfer to excited Er3+ ions in their metastable 4I13/2 state. The transfer coefficient for this secondary 4I13/2 CET is determined to be of the same order of magnitude as that for the initial Yb3+ to ground-state Er3+ CET. Additionally, the decay measurements and modeling indicate that a fraction of Yb3+ ions does not participate in energy exchange with the Er3+. These nonparticipatory Yb3+ ions amounted to ~15% of the total Yb3+ concentration and could constitute Yb3+ clusters. Both secondary CET and nonparticipatory Yb3+ will lower Er3+–Yb3+ fiber amplifier efficiencies.

© 2004 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2410) Fiber optics and optical communications : Fibers, erbium
(160.5690) Materials : Rare-earth-doped materials

Citation
George A. Sefler, W. Daniel Mack, George C. Valley, and Todd S. Rose, "Secondary energy transfer and nonparticipatory Yb3+ ions in Er3+-Yb3+ high-power amplifier fibers," J. Opt. Soc. Am. B 21, 1740-1748 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-10-1740


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
  2. F. Leplingard, P. Bousselet, M. Bettiati, L. Gasca, L. Lorcy, A. Tardy, and D. Bayart, “High-power (+24 dBm) double-clad erbium-doped fiber amplifier for WDM applications in the C-band (1528 nm–1562 nm),” in Conference on Lasers and Electro-Optics, Europe, Conference Digest (Institute of Electrical and Electronic Engineers, Piscataway, N.J., 2000), p. 381.
  3. J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photonics Technol. Lett. 5, 301–303 (1993).
  4. L. Goldberg, B. Cole, and E. Snitzer, “V-groove side-pumped 1.5 μm fibre amplifier,” Electron. Lett. 33, 2127–2129 (1997).
  5. V. P. Gapontsev, V. V. Fomin, I. E. Samartsev, and A. Unt, “25 kW peak power, wide-tunable-repetition-rate and pulse duration eye-safe MOPFA laser,” in Conference on Lasers and Electro-optics, Vol. 9 of OSA 1996 Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 209–210.
  6. G. Wilson, J. M. P. Delavaux, A. Stentz, I. Ryazansky, R. Windeler, M. Fishteyn, and C. McIntosh, “Low-noise 1-Watt Er/Yb fiber amplifier for CATV distribution in HFC and FTTH/C systems,” in Optical Fiber Communication Conference, Postconference Digest, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 58–60.
  7. F. Di Pasquale, G. Grasso, F. Meli, G. Sacchi, and S. Turolla, “23 dBm output power Er/Yb co-doped fiber amplifier for WDM signals in the 1575–1605 nm wavelength region,” in Optical Fiber Communication Conference, Vol. 2 of OSA 1999 Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 4–6.
  8. D. M. Dagenais, L. Goldberg, R. P. Moeller, and W. K. Burns, “Wavelength stability characteristics of a high-power, amplified superfluorescent source,” J. Lightwave Technol. 17, 1415–1422 (1999).
  9. E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5, 73–75 (1993).
  10. J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasitic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” J. Lightwave Technol. 13, 341–349 (1995).
  11. M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photonics Technol. Lett. 7, 303–305 (1995).
  12. C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90, 4314–4320 (2001).
  13. E. Yahel and A. Hardy, “Efficiency optimization of high-power, Er3+–Yb3+-codoped fiber amplifiers for wavelength-division-multiplexing applications,” J. Opt. Soc. Am. B 20, 1189–1197 (2003).
  14. E. Yahel and A. Hardy, “Modeling high-power Er3+–Yb3+ codoped fiber lasers,” J. Lightwave Technol. 21, 2044–2052 (2003).
  15. M. Achtenhagen, R. J. Beeson, F. Pan, B. Nyman, and A. Hardy, “Gain and noise in ytterbium-sensitized erbium-doped fiber amplifiers: measurements and simulations,” J. Lightwave Technol. 19, 1521–1526 (2001).
  16. G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol. Mater. Devices Syst. 7, 21–44 (2001).
  17. M. Karasek, “Optimum design of Er3+–Yb3+ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33, 1699–1705 (1997).
  18. J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 6, 383–385 (1994).
  19. B.-C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+–Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17, 833–839 (2000).
  20. V. P. Gapontsev, S. M. Matitsin, and A. A. Isineev, “Channels of energy losses in erbium laser glasses in the simulated emission process,” Opt. Commun. 46, 226–230 (1983).
  21. G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990–2001 (1998).
  22. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20, 2487–2489 (1995).
  23. M. L. Abell and J. P. Braselton, Differential Equations with Mathematica (Academic, Boston, 1993).
  24. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991).
  25. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).
  26. E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1730–1741 (1990).
  27. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering effects on double energy transfer in heavily ytterbium-erbium-codoped silica fibers,” J. Opt. Soc. Am. B 13, 693–701 (1996).
  28. C.-H. Huang and L. McCaughan, “Polarization-dependent enhancement of population inversion and of green upconversion in Er:LiNbO3 by Yb codoping,” IEEE Photonics Technol. Lett. 9, 599–601 (1997).
  29. C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitived Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
  30. E. I. Galant, V. N. Kalinin, S. G. Lunter, A. A. Mak, A. K. Przhevuskii, D. S. Prilezhaev, M. N. Tolstoi, and V. A. Fromzel, “Stimulated emission from laser-pumped ytterbium- and erbium-activated glasses,” Sov. J. Quantum Electron. 6, 1190–1195 (1976).
  31. A. G. Murzin and V. A. Fromzel, “Maximum gains of laser-pumped glasses activated with Yb3+ and Er3+ ions,” Sov. J. Quantum Electron. 11, 304–308 (1981).
  32. E. F. Artemev, A. G. Murzin, Y. K. Fedorov, and V. A. Fromzel, “Some characteristics of population inversion at the 4I13/2 level of erbium ions in ytterbium-erbium glasses,” Sov. J. Quantum Electron. 11, 1266–1268 (1981).
  33. S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quantum Electron. 31, 249–262 (1999).
  34. R. Francini, F. Giovenale, U. M. Grassano, P. Laporta, and S. Taccheo, “Spectroscopy of Er and Er–Yb-doped phosphate glasses,” Opt. Mater. (Amsterdam, Neth.) 13, 417–425 (2000).
  35. D. Barbier, M. Rattay, F. Saint Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Technol. Lett. 9, 315–317 (1997).
  36. P. F. Wysocki, G. Nykolak, D. S. Shenk, and K. Eason, “Noise figure limitation in ytterbium-codoped erbium-doped fiber amplifiers pumped at 1064 nm,” in Optical Fiber Communication Conference, Vol. 2 of OSA 1996 Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 32–33.
  37. S. Jiang, M. J. Myers, D. L. Rhonehouse, S. J. Hamlin, J. D. Myers, U. Griebner, R. Kock, and H. Schonnagel, “Ytterbium doped phosphate laser glasses,” in Solid State Lasers VI, R. Scheps, ed. Proc. SPIE 2986, 10–15 (1997).
  38. A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30, 249–264 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited