OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 1749–1757

Three-dimensional optical forces and transfer of orbital angular momentum from multiringed light beams to spherical microparticles

Karen Volke-Sepúlveda, Sabino Chávez-Cerda, Veneranda Garcés-Chávez, and Kishan Dholakia  »View Author Affiliations

JOSA B, Vol. 21, Issue 10, pp. 1749-1757 (2004)

View Full Text Article

Acrobat PDF (412 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Experimental evidence of transfer of orbital angular momentum of multiringed beams to dielectric particles has been reported recently [e.g., J. Opt. B <b>4</b>, S82 (2002); Phys. Rev. Lett. <b>91</b>, 093602 (2003)]. Here we present a detailed theoretical examination of the forces involved in trapping and transferring orbital angular momentum to microparticles due to a multiringed light beam, particularly a Bessel beam. Our investigation gathers, in a more general way, the trapping forces for high-index and low-index dielectric transparent particles, as well as for reflective metallic particles, as a function of particle size and position relative to the dimensions of the rings of the beam. We find that particles can be trapped in different regions of the beam intensity profile according to their size and that an azimuthal force component opposite to the beam helicity may appear under certain circumstances, depending on the relative size and radial equilibrium position with respect to the beam for high-index spheres.

© 2004 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(140.3300) Lasers and laser optics : Laser beam shaping
(140.7010) Lasers and laser optics : Laser trapping
(290.5850) Scattering : Scattering, particles

Karen Volke-Sepúlveda, Sabino Chávez-Cerda, Veneranda Garcés-Chávez, and Kishan Dholakia, "Three-dimensional optical forces and transfer of orbital angular momentum from multiringed light beams to spherical microparticles," J. Opt. Soc. Am. B 21, 1749-1757 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
  2. R. Horak, Z. Bouchal, and J. Bajer, “Non-diffracting stationary electromagnetic field,” Opt. Commun. 133, 315–327 (1997).
  3. K. P. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B: Quantum Semiclass. Opt. 4, S82–S89 (2002).
  4. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
  5. S. Chávez-Cerda, “A new approach to Bessel beams,” J. Mod. Opt. 46, 923–930 (1999).
  6. A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
  7. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
  8. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
  9. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
  10. V. Garcés-Chávez, K. Volke-Sepúlveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Orbital angular momentum transfer to an optically trapped low-index particle,” Phys. Rev. A 66, 063402 (2002).
  11. M. V. Berry, “Much ado about nothing: optical distortion lines (phase singularities, zeros, and vortices),” in International Conference on Singular Optics, M. S. Soskin, ed., Proc. SPIE 3487, 6 (1998).
  12. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
  13. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multi-ringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
  14. G. Roosen and C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
  15. J. S. Kim and S. S. Lee, “Scattering of laser beams and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am. 73, 303–312 (1983).
  16. A. Ashkin, “Forces of a single-beam gradient trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
  17. R. Gussgard, T. Lindmo, and I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1922–1930 (1992).
  18. R. C. Gauthier and S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” J. Opt. Soc. Am. B 12, 1680–1686 (1995).
  19. S. Nemoto and H. Togo, “Axial force acting on a dielectric sphere in a focused laser beam,” Appl. Opt. 37, 6386–6394 (1998).
  20. M. Mansuripur, “Geometric-optical rays, Poynting’s vector and field momenta,” Opt. Photonics News 10 (3), 53–56 (1999).
  21. J. Courtial and M. J. Padgett, “Limit to the orbital angular momentum per unit energy in a light beam that can be focused onto a small particle,” Opt. Commun. 173, 269–274 (2000).
  22. J. C. Gutierrez-Vega, M. D. Iturbe-Castillo, and S. Chavez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000).
  23. Karen Volke-Sepulveda, “Light beams with angular momentum and applications in optical tweezers,” Ph.D. thesis (Instituto Nacional de Astrofísica, Optica y Electroníca, Puebla, Mexico, 2003).
  24. J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
  25. J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
  26. A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24 (12), 586–588 (1974).
  27. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature (London) 426, 421–424 (2003).
  28. K. Ladavac, K. Kasza, and D. G. Grier, “Sorting by periodic potential energy landscapes: optical fractionation,” Phys. Rev. E (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited