OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 1758–1771

Dynamics of two-color laser systems with spectrally filtered feedback

Marcelo Matus, Miroslav Kolesik, Jerome V. Moloney, Martin Hofmann, and Stephan W. Koch  »View Author Affiliations

JOSA B, Vol. 21, Issue 10, pp. 1758-1771 (2004)

View Full Text Article

Acrobat PDF (2197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two-color laser systems based on a semiconductor laser device and spectrally filtered feedback are studied. By use of a broadband numerical simulator and realistic active-structure optical responses, various two-color lasing configurations are investigated. Five characteristic dynamic regimes are observed and classified as semicoherent, coherent, multimode, chaotic, and multimode chaotic. Practical implications for gigahertz or terahertz signal-generation applications are discussed.

© 2004 Optical Society of America

OCIS Codes
(140.1540) Lasers and laser optics : Chaos
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.7070) Nonlinear optics : Two-wave mixing

Marcelo Matus, Miroslav Kolesik, Jerome V. Moloney, Martin Hofmann, and Stephan W. Koch, "Dynamics of two-color laser systems with spectrally filtered feedback," J. Opt. Soc. Am. B 21, 1758-1771 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. O. Axner, M. Lejon, I. Magnusson, H. Rubinsztein-Dunlop, and S. Sjöström, “Detection of traces in semiconductor materials by two-color laser-enhanced ionization spectroscopy in flames,” Appl. Opt. 26, 3521–3525 (1987).
  2. J. Zhou, N. Park, J. W. Dawson, and K. J. Vahala, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
  3. J. Langbein, R. Burford, and L. Slater, “Variations in fault slip and strain accumulation at Parkfield, California: initial results using two-color geodimeter measurements, 1984–1988,” J. Geophys. Res. 95, 2533–2552 (1990).
  4. S. Jiang and M. Dagenais, “Parameter extraction in semiconductor lasers using nearly degenerate four-wave mixing measurements,” in Lasers and Electro-Optics Society Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1993), pp. 578–579.
  5. J.-M. Liu and T. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
  6. C.-L. Wang and C.-L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20, 1292–1294 (1995).
  7. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
  8. T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, and M. Sperling, “Continuous wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
  9. B. Hu and M. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
  10. K. J. Siebert, H. Quast, and H. G. Roskos, “cw–THz generation using a two-color Ti:sapphire laser,” presented at the International THz Workshop 2000, Sandbjerg, Denmark, September 17–19, 2000.
  11. F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color cw Ti:Al2 O3 laser,” IEEE J. Quantum Electron. 35, 1731–1736 (1999).
  12. C.-L. Wang and C.-L. Pana, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
  13. M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589–1591 (1996).
  14. D. Lei, F. Dejun, L. Heliang, G. Chunfeng, Z. Donghui, K. Guiyun, L. Zhiguo, L. Kecheng, S. Qiuqin, and D. Xiaoyi, “A novel dual wavelength Er-doped fiber laser with narrow line-width,” Fifth Asia-Pacific Conference on Communications and Fourth Optoelectronics and Communications Conference (IEEE, Piscataway, N.J., 1999), pp. 1501–1503.
  15. S. Reilly, S. James, and R. Tatam, “Tunable and switchable dual wavelength lasers using optical fibre Bragg grating external cavities,” Electron. Lett. 38, 1033–1034 (2002).
  16. S. Pajarola, G. Guekos, and J. Mørk, “Optical generation of millimeter-waves using a dual-polarization emission external cavity diode laser,” IEEE Photonics Technol. Lett. 8, 157–159 (1996).
  17. M. Brunner, K. Gulden, R. Hövel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photonics Technol. Lett. 12, 1316–1318 (2000).
  18. P. Pellandini, R. Stanley, R. Houdré, U. Oesterle, and M. Ilegems, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
  19. K. Razavi and P. Davies, “Semiconductor laser sources forthe generation of millimetre-wave signals,” IEE Proc.: Optoelectron. 145, 159–163 (1999).
  20. M. Maeda, T. Hirata, M. H. Masayuki Suehiro, A. Yamaguchi, and H. Hosomatsu, “Photonic integrated circuit combining two GaAs distributed Bragg reflector laser diodes for generation of the beat signal,” Jpn. J. Appl. Phys., Part 1 31, L183–L185 (1992).
  21. S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal-mode laser diodes,” IEEE Photonics Technol. Lett. 7, 959–961 (1995).
  22. S. D. Roh, T. S. Yeoh, R. B. Swint, A. E. Huber, C. Y. Woo, J. S. Hughes, and J. J. Coleman, “Dual-wavelength InGaAs GaAs ridge waveguide distributed Bragg reflector lasers with tunable mode separation,” IEEE Photonics Technol. Lett. 12, 1307–1309 (2000).
  23. J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, and Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photonics Technol. Lett. 12, 1310–1312 (2000).
  24. M. Osowski, R. Lammert, and J. Coleman, “A dual-wavelength source with monolithically integrated electroabsorption modulators and Y-junction coupler by selective-area MOCVD,” IEEE Photonics Technol. Lett. 9, 158–160 (1997).
  25. M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
  26. F. Rogister, D. W. Sukow, A. Gavrielides, P. Megret, O. Deparis, and M. Blondel, “Experimental demonstration of suppression of low-frequency fluctuations and stabilization of an external-cavity laser diode,” Opt. Lett. 25, 808–810 (2000).
  27. D. W. Sukow, M. C. Hegg, J. L. Wright, and A. Gavrielides, “Mixed external cavity mode dynamics in a semiconductor laser,” Opt. Lett. 27, 827–829 (2002).
  28. S. Jiang and M. Dagenais, “Observation of nearly degenerate and cavity-enhanced highly nondegenerate four-wave mixing in semiconductor lasers,” Appl. Phys. Lett. 62, 2757–2759 (1993).
  29. T. Erneux, A. Gavrielides, and M. Sciamanna, “Stable microwave oscillations due to external-cavity-mode beating in laser diodes subject to optical feedback,” Phys. Rev. A 66, 033809 (2002).
  30. T. Erneux, F. Rogister, A. Gavrielides, and V. Kovanis, “Bifurcation to mixed external cavity mode solutions for semiconductor lasers subject to optical feedback,” Opt. Commun. 183, 467–677 (2000).
  31. F. Rogister, P. Megret, O. Deparis, M. Blondel, and T. Erneux, “Suppression of low-frequency fluctuations and stabilization of a semiconductor laser subjected to optical feedback from a double cavity: theoretical results,” Opt. Lett. 2174, 1218–1220 (1999).
  32. A. Mecozzi, A. D’Ottavi, and R. Hui, “Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold,” IEEE J. Quantum Electron. 29, 1477–1487 (1993).
  33. E. Cerboneschi, D. Hennequin, and E. Arimondo, “Frequency conversion in external cavity semiconductor lasers exposed to optical injection,” IEEE J. Quantum Electron. 32, 192–200 (1996).
  34. S. Murata, A. Tomita, J. Shimizu, M. Kitamura, and A. Suzuki, “Observation of highly nondegenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
  35. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
  36. J. Mørk, B. Tromborg, and J. Mark, “Chaos in semiconductor laser with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
  37. A. Hohl and A. Gavrielides, “Bifurcation cascade in a semiconductor laser subject to optical feedback,” Phys. Rev. Lett. 82, 1148–1151 (1999).
  38. I. Fischer, O. Hess, W. Elsässer, and E. Göbel, “High-dimensional chaotic dynamics of an external cavity semiconductor laser,” Phys. Rev. Lett. 73, 2188–2191 (1994).
  39. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
  40. J. M. Buldú, J. Trull, M. C. Torrent, J. García-Ojalvo, and C. R. Mirasso, “Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback,” J. Opt. B Quantum Semiclass. Opt. 4, L1–L3 (2002).
  41. T. W. Carr, D. Pieroux, and P. Mandel, “Theory of a multimode semiconductor laser with optical feedback,” Phys. Rev. A 63, 033817 (2001).
  42. C. Serrat, S. Prins, and R. Vilaseca, “Dynamics and coherence of a multimode semiconductor laser with optical feedback in an intermediate-length external-cavity regime,” Phys. Rev. A 68, 053804 (2003).
  43. J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic theory of gain, absorption and refractive index in semiconductor laser materials: influence of conduction-band nonparabolicity and Coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. 35, 1878–1886 (1999).
  44. M. Kolesik and J. V. Moloney, “A spatial digital filter method for broad-band simulation of semiconductor lasers,” IEEE J. Quantum Electron. 37, 936–944 (2001).
  45. W. Chow and S. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Springer-Verlag, Berlin, 1999).
  46. J. Hader, A. Zakharian, J. Moloney, T. Nelson, W. Siskaninetz, J. Ehret, K. Hantke, S. Koch, and M. Hofmann, “Semiconductor quantum-well designer active materials,” Opt. Photonics News 13 (12), 22 (2002).
  47. M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
  48. P. Smowton, P. Blood, and W. Chow, “Comparison of experimental and theoretical gain-current relations in GaInP quantum well lasers,” Appl. Phys. Lett. 76, 1522–1524 (2000).
  49. A. Cartaxo and J. Morgado, “Analysis of semiconductor laser frequency noise taking into account multiple reflections in the external cavity,” IEE Proc.: Optoelectron. 147, 335–344 (2000).
  50. P. Besnard, B. Meziane, K. Ait-Ameur, and S. Stephan, “Microwave spectra in external-cavity semiconductor lasers: theoretical modeling of multipass resonances,” IEEE J. Quantum Electron. 30, 1713–1722 (1994).
  51. C. R. Mirasso, M. Kolesik, M. Matus, J. K. White, and J. V. Moloney, “Synchronization and multimode dynamics of mutually coupled semiconductor lasers,” Phys. Rev. A 65, 013805 (2002).
  52. M. Matus, J. V. Moloney, and M. Kolesik, “Relevance of symmetry for the synchronization of chaotic optical systems and the related Lang–Kobayashi model limitations,” Phys. Rev. E 67, 016208 (2003).
  53. R. Indik, A. Knorr, R. Binder, J. V. Moloney, and S. W. Koch, “Propagation-induced adiabatic following in a semiconductor amplifier,” Opt. Lett. 19, 966–968 (1994).
  54. R. Indik, R. Binder, M. M. J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, “Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers,” Phys. Rev. A 53, 3614–3620 (1996).
  55. S. Hughes, “Carrier–carrier interaction and ultrashort pulse propagation in a highly excited semiconductor laser amplifier beyond the rate equation limit,” Phys. Rev. A 58, 2567–2576 (1998).
  56. A. D. Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. S. J. Landreau, A. Ougazzaden, and J. C. Bouley, “Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett. 64, 2492–2494 (1994).
  57. Y.-J. Wong, C.-W. Hsu, and C. C. Yang, “Characteristics of adual-wavelength semiconductor laser near 1550 nm,” IEEE Photonics Technol. Lett. 11, 173–175 (1999).
  58. L. Hsu, L. Chi, S. Wang, and C.-L. Pan, “Frequency tracking and stabilization of a tunable dual-wavelength external-cavity diode laser,” Opt. Commun. 199, 195–200 (1999).
  59. P. Gi, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys., Part 1 38, L1246–L1248 (1999).
  60. K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry–Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
  61. M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
  62. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
  63. S. Pajarola, G. Guekos, and H. Kawaguchi, “Dual-polarization optical pulse generation using a mode-locked two-arm external cavity diode laser,” Opt. Commun. 154, 39–42 (1998).
  64. B. Tromborg, J. Osmundsen, and H. Olesen, “Stability analysis for a semiconductor laser in an external cavity,” IEEE J. Quantum Electron. 20, 1023–1032 (1984).
  65. K.-S. Lee and C. Shu, “Generation of optical millimeter-wave with a widely tunable carrier using Fabry–Perot grating-lens external cavity laser,” IEEE Microwave Guid. Wave Lett. 9, 192–194 (1999).
  66. M. Yousefi, D. Lenstra, G. Vemuri, and A. Fischer, “Control of nonlinear dynamics of a semiconductor laser with filtered optical feedback,” IEE Proc.: Optoelectron. 148, 233–237 (2001).
  67. A. Mihaescu, T. Tam, P. Besnard, and G. Stephan, “Effects of external cavities on laser spectra: application to a fibre laser,” J. Opt. B Quantum Semiclass. Opt. 4, 67–74 (2002).
  68. N. K. Dutta, T. Cella, J. L. Zilko, A. B. Piccirilli, R. L. Brown, and S. G. Napholtz, “Integrated external cavity distributed Bragg reflector laser,” Appl. Phys. Lett. 50, 644–646 (1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited