OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 1784–1791

Thermal quenching of the fluorescence quantum efficiency in colquiriite crystals measured by thermal lens spectrometry

Viviane Pilla, Tomaz Catunda, Sandro Marcio Lima, Antonio Neto Medina, Mauro Luciano Baesso, Hans P. Jenssen, and Arlete Cassanho  »View Author Affiliations

JOSA B, Vol. 21, Issue 10, pp. 1784-1791 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (284 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dual-beam mode-mismatched thermal lens technique was used to study the temperature dependence of the absolute fluorescence quantum efficiency (η) of a thermal-quenching fluorescence (TQF) process in Cr3+-doped colquiriite crystals (LiSAF and LiSGaF), from 300 to 450 K. The research was developed at a low excitation-power level in order to eliminate the energy-transfer upconversion effect. The results showed that TQF is the main loss mechanism involved. The thermal diffusivity, the thermal conductivity, and the specific heat of the samples were also measured in the same temperature range.

© 2004 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(160.3380) Materials : Laser materials
(350.5340) Other areas of optics : Photothermal effects
(350.6830) Other areas of optics : Thermal lensing

Viviane Pilla, Tomaz Catunda, Sandro Marcio Lima, Antonio Neto Medina, Mauro Luciano Baesso, Hans P. Jenssen, and Arlete Cassanho, "Thermal quenching of the fluorescence quantum efficiency in colquiriite crystals measured by thermal lens spectrometry," J. Opt. Soc. Am. B 21, 1784-1791 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Mandelis, J. Vanniasinkan, and S. Budhudu, “Absolute nonradiative energy-conversion-efficiency spectra in Ti3+:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. B 48, 6808–6821 (1993). [CrossRef]
  2. A. Rosencwaig and E. A. Hildum, “Nd3+ fluorescence quantum-efficiency measurements with photoacoustics,” Phys. Rev. B 23, 3301–3307 (1981). [CrossRef]
  3. E. Rodriguez, J. O. Tocho, and F. Cusso, “Simultaneous multiple-wavelength photoacoustic and luminescence experiments—a method for fluorescent-quantum-efficiency determination,” Phys. Rev. B 47, 14049–14053 (1993). [CrossRef]
  4. G. A. Torchia, D. Schinca, N. M. Khaidukov, and J. O. Tocho, “The luminescent quantum efficiency of Cr3+ ions in Cs2NaAlF6 single crystals,” Opt. Mater. 20, 301–304 (2002). [CrossRef]
  5. D. P. Devor, L. G. Deshazer, and R. C. Pastor, “Nd:YAG quantum efficiency and related radiative properties,” IEEE J. Quantum Electron. 25, 1863–1873 (1989). [CrossRef]
  6. R. C. Powel, Physics of Solid-State Laser Materials (Springer-Verlag, New York, 1998).
  7. M. Pollnau, P. L. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998). [CrossRef]
  8. M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998). [CrossRef]
  9. S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220–3222 (2001). [CrossRef]
  10. S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, “Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses,” Appl. Phys. Lett. 81, 589–591 (2002). [CrossRef]
  11. A. J. Ramponi and J. A. Caird, “Fluorescence quantum efficiency and optical heating efficiency in laser crystals and glasses by laser calorimetry,” J. Appl. Phys. 63, 5476–5484 (1998). [CrossRef]
  12. S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000). [CrossRef]
  13. J. H. Rohling, A. M. F. Caldeira, J. R. Pereira, A. M. Medina, A. C. Bento, M. L. Baesso, and L. C. M. Miranda, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001). [CrossRef]
  14. S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60, 15173–15178 (1999). [CrossRef]
  15. M. A. Noginov, M. Vondrova, and B. D. Lucas, “Thermally induced optical bistability in Cr-doped Colquiriite crystals,” Phys. Rev. B 65, 035112–1–035112–8 (2001). [CrossRef]
  16. M. A. Noginov, H. P. Jessen, and A. Cassanho, “Upconversion in Cr:LiSGaF and Cr:LiSAF,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1993), pp. 376–380.
  17. S. Uemura and K. Miyazaki, “Thermal characteristics of a continuous-wave Cr:LiSAF laser,” Jpn. J. Appl. Phys., Part 1 36, 4312–4315 (1997). [CrossRef]
  18. M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992). [CrossRef]
  19. F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997). [CrossRef]
  20. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and M. A. Noginov, “Efficient continuous-wave TEM00 and femtosecond Kerr-lens mode-locked Cr:LiSrGaF laser,” Opt. Lett. 21, 204–206 (1996). [CrossRef] [PubMed]
  21. D. Kopf, K. J. Weingarten, L. R. Brovelli, M. Kamp, and U. Keller, “Diode-pumped 100-fs passively mode-locked Cr:LiSAF laser with an antiresonant Fabry–Perot saturable absorber,” Opt. Lett. 19, 2143–2145 (1994). [CrossRef] [PubMed]
  22. A. Cassanho and H. Jenssen, “LisGaF offers performance edge over LiSAF,” Laser Focus World 33, 169–174 (1997).
  23. J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998). [CrossRef]
  24. F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387–389 (1997). [CrossRef] [PubMed]
  25. V. Pilla, T. Catunda, H. P. Jenssen, and A. Cassanho, “Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,” Opt. Lett. 28, 239–241 (2003). [CrossRef] [PubMed]
  26. S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. Deloach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAlF6 crystals for laser operation,” Appl. Opt. 33, 5526–5536 (1994). [CrossRef] [PubMed]
  27. M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluorescence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271–2273 (1992). [CrossRef]
  28. L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, and J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetime,” Phys. Rev. B 34, 2735–2740 (1986). [CrossRef]
  29. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982). [CrossRef] [PubMed]
  30. A. N. Medina, A. M. F. Caldeira, A. C. Bento, M. L. Baesso, J. A. Sampaio, T. Catunda, and F. G. Gandra, “Thermal relaxation method to determine the specific heat of optical glasses,” J. Non-Cryst. Solids 304, 299–305 (2002). [CrossRef]
  31. A. A. Andrade, E. Tenório, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5:Cr3+,” J. Opt. Soc. Am. B 16, 395–400 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited