OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 1792–1796

Spectral shift and Q change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness

Svetlana V. Boriskina, Trevor M. Benson, Phillip Sewell, and Alexander I. Nosich  »View Author Affiliations

JOSA B, Vol. 21, Issue 10, pp. 1792-1796 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (300 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Radiation loss and resonant frequency shift due to sidewall surface roughness of circular and square high-contrast microcavities are estimated and compared by use of a boundary integral equations method. An effect of various harmonic components of the contour perturbation on the whispering-gallery (WG) modes in the circular microdisk and WG-like modes in the square microcavity is demonstrated. In both cases, contour deformations that are matched to the mode field pattern cause the most significant frequency detuning and Q-factor change. Favorably mode-matched deformations have been found, enabling one to manipulate the Q factors of the microcavity modes.

© 2004 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators
(240.5770) Optics at surfaces : Roughness

Svetlana V. Boriskina, Trevor M. Benson, Phillip Sewell, and Alexander I. Nosich, "Spectral shift and Q change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness," J. Opt. Soc. Am. B 21, 1792-1796 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 15, 673–681 (1999). [CrossRef]
  2. V. Van, P. P. Absil, J. V. Hryniewicz, and P.-T. Ho, “Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model,” J. Lightwave Technol. 19, 1734–1739 (2001). [CrossRef]
  3. W.-H. Guo, Y.-Z. Huang, Q.-Y. Lu, and L.-J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39, 1106–1110 (2003). [CrossRef]
  4. M. Lohmeyer, “Mode expansion modeling of rectangular integrated optical resonators,” Opt. Quantum Electron. 34, 541–557 (2002). [CrossRef]
  5. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999). [CrossRef]
  6. T. Ling, L. Liu, Q. Song, L. Xu, and W. Wang, “Intense directional lasing from a deformed square-shaped organic–inorganic hybrid glass microring cavity,” Opt. Lett. 28, 1784–1786 (2003). [CrossRef] [PubMed]
  7. A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993). [CrossRef]
  8. S. J. Choi, K. Djordjev, S. J. Choi, and P. D. Dapkus, “CH4-based dry etching of high Q InP microdisks,” J. Vac. Sci. Technol. B 20, 301–305 (2002). [CrossRef]
  9. B. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996). [CrossRef] [PubMed]
  10. B.-J. Li and P.-L. Liu, “Numerical analysis of microdisk lasers with rough boundaries,” IEEE J. Quantum Electron. 35, 791–795 (1997).
  11. Y. Z. Huang, W. H. Guo, and L. J. Yu, “Analysis of mode quality factors for equilateral triangle semiconductor microlasers with rough sidewalls,” Chin. Phys. Lett. 19, 674–676 (2002). [CrossRef]
  12. A. I. Rahachou and I. V. Zozoulenko, “Scattering matrix approach to the resonant states and Q values of microdisk lasing cavities,” Appl. Opt. 43, 1761–1772 (2004). [CrossRef] [PubMed]
  13. J. P. Barton, “Effects of surface perturbations on the quality and the focused-beam excitation of microsphere resonance,” J. Opt. Soc. Am. A 16, 1974–1980 (1999). [CrossRef]
  14. S. V. Boriskina, P. Sewell, T. M. Benson, and A. I. Nosich, “Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization,” J. Opt. Soc. Am. A 21, 393–402 (2004). [CrossRef]
  15. M. Fujita and T. Baba, “Proposal and finite-difference time-domain simulation of Whispering Gallery mode microgear cavity,” IEEE J. Quantum Electron. 37, 1253–1258 (2001). [CrossRef]
  16. M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051–2053 (2002). [CrossRef]
  17. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Highly efficient design of spectrally engineered whispering-gallery-mode laser resonators,” Opt. Quantum Electron. 35, 545–559 (2003). [CrossRef]
  18. B. E. Little, J. P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4–6 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited