OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 1839–1847

All-optical logic operations by means of two interlinked χ(2) interactions in a single crystal

Emiliano Puddu, Alessia Allevi, Alessandra Andreoni, and Maria Bondani  »View Author Affiliations


JOSA B, Vol. 21, Issue 10, pp. 1839-1847 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001839


View Full Text Article

Enhanced HTML    Acrobat PDF (675 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The possibility of realizing the fundamental logic gates and, or, and not, which operate in parallel through two interlinked χ(2) interactions of sum- and difference-frequency generations in a single type I β-BaB2O4 crystal, is presented both theoretically and experimentally. Optical bits are encoded and read as amplitude modulation of the harmonics of a Nd:YAG laser. Owing to the excellent optical resolution of the system, data can be encoded at high density. The implementation of an all-optical parallel half-adder is also shown. The output fields can be frequency converted to implement an all-optical looping circuit.

© 2004 Optical Society of America

OCIS Codes
(200.3050) Optics in computing : Information processing
(200.3760) Optics in computing : Logic-based optical processing
(230.1150) Optical devices : All-optical devices
(230.4320) Optical devices : Nonlinear optical devices

Citation
Emiliano Puddu, Alessia Allevi, Alessandra Andreoni, and Maria Bondani, "All-optical logic operations by means of two interlinked χ(2) interactions in a single crystal," J. Opt. Soc. Am. B 21, 1839-1847 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-10-1839


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical half adder using semiconductor optical amplifier based devices,” Opt. Commun. 218, 345–349 (2003). [CrossRef]
  2. P. O. Hedekvist, A. Bhardwaj, K. Vahala, and H. Andersson, “Advanced all-optical logic gates on a spectral bus,” Appl. Opt. 40, 1761–1766 (2001). [CrossRef]
  3. H. Soto, J. Topomonzo, D. Erasme, G. Guekos, and M. Castro, “Experimental demonstration of all-optical logic gates using cross-polarization modulation in a semiconductor optical amplifier,” in Smart Structure, Devices, and Systems, E. C. Harvey, D. Abbott, and V. K. Varadan, eds., Proc. SPIE 4935, 495–502 (2002). [CrossRef]
  4. X. Zhang, Y. Wang, J. Sun, D. Liu, and D. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs,” Opt. Express 12, 361–366 (2004). [CrossRef] [PubMed]
  5. P. Wen, M. Sanchez, M. Gross, and S. Esener, “Vertical-cavity optical AND gate,” Opt. Commun. 219, 383–387 (2003). [CrossRef]
  6. A. H. Khan and U. R. Nejib, “Optical logic gates employing liquid-crystal optical switches,” Appl. Opt. 26, 270–273 (1987). [CrossRef] [PubMed]
  7. S. A. Collins, Jr., “Application of liquid crystals to optical logic gates,” in Liquid Crystal Chemistry, Physics, and Applications, J. W. Doane and Z. Yaniv, eds., Proc. SPIE 1080, 72–82 (1989). [CrossRef]
  8. F. T. S. Yu, S. Jutamulia, and D. A. Gregory, “Optical parallel logic gates using inexpensive liquid-crystal televisions,” Opt. Lett. 12, 1050–1052 (1987). [CrossRef] [PubMed]
  9. M. Shirakawa, T. Takemori, and J. Ohtsubo, “Optical computing based on a selector logic,” Opt. Commun. 124, 333–344 (1996). [CrossRef]
  10. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002). [CrossRef]
  11. Y. Takaki and H. Ohzu, “Optical logic operations by holographic filters,” Jpn. J. Opt. 16, 345–351 (1987).
  12. Y. Takaki and H. Ohzu, “Optical half-adder using wavefront superposition,” Appl. Opt. 29, 4351–4358 (1990). [CrossRef] [PubMed]
  13. C. P. Singh and S. Roy, “All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates,” Opt. Commun. 218, 55–66 (2003). [CrossRef]
  14. Y. Huang, S. T. Wu, and Y. Zhao, “All-optical switching characteristic in bacteriorhodopsin and its applications in integrated optics,” Opt. Express 12, 895–906 (2004). [CrossRef] [PubMed]
  15. L. Brzozowski and E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron. 36, 550–555 (2000). [CrossRef]
  16. L. Brzozowski and E. H. Sargent, “All-optical analog-to-digital converters, hardlimiters, and logic gates,” J. Lightwave Technol. 19, 114–119 (2001). [CrossRef]
  17. S. Pereira, P. Chak, and J. E. Sipe, “All-optical AND gate by use of a Kerr nonlinear microresonator structure,” Opt. Lett. 28, 444–446 (2003). [CrossRef] [PubMed]
  18. I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640–643 (2000).
  19. S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” http://arxiv.org/abs/nlin.PS/0311013 (2004).
  20. N. Minkovski, S. M. Saltiel, G. I. Petrov, O. Albert, and J. Etchepare, “Polarization rotation induced by cascaded third-order processes,” Opt. Lett. 27, 2025–2027 (2002). [CrossRef]
  21. R. Schiek, L. Friedrich, H. Fang, G. I. Stegeman, K. R. Parameswaran, M.-H. Chou, and M. M. Fejer, “Nonlinear directional coupler in periodically poled lithium niobate,” Opt. Lett. 24, 1617–1619 (1999). [CrossRef]
  22. K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photonics Technol. Lett. 12, 654–656 (2000). [CrossRef]
  23. G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13, 341–343 (2001). [CrossRef]
  24. A. Chowdhury, C. Staus, B. F. Boland, T. F. Kuech, and L. McCaughan, “Experimental demonstration of 1535–1555-nm simultaneous optical wavelength interchange with a nonlinear photonic crystal,” Opt. Lett. 26, 1353–1355 (2001). [CrossRef]
  25. S. M. Saltiel and Y. S. Kivshar, “All-optical deflection and splitting by second-order cascading,” Opt. Lett. 27, 921–923 (2002). [CrossRef]
  26. M. Soljaceić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002). [CrossRef]
  27. M. A. Krumbügel, J. N. Sweetser, D. N. Fittinghoff, K. W. DeLong, and R. Trebino, “Ultrafast optical switching by use of fully phase-matched cascaded second-order nonlinearities in a polarization-gate geometry,” Opt. Lett. 22, 245–247 (1997). [CrossRef] [PubMed]
  28. G. I. Petrov, O. Albert, N. Minkovski, J. Etchepare, and S. M. Saltiel, “Experimental and theoretical investigation of generation of a cross-polarized wave by cascading of two different second-order processes,” J. Opt. Soc. Am. B 19, 268–279 (2002). [CrossRef]
  29. M. Bondani, A. Allevi, E. Puddu, A. Andreoni, A. Ferraro, and M. G. A. Paris, “Properties of two interlinked χ(2) interactions in noncollinear phase matching,” Opt. Lett. 29, 180–182 (2004). [CrossRef] [PubMed]
  30. A. Allevi, A. Andreoni, M. Bondani, A. Ferraro, M. G. A. Paris, and E. Puddu, “Quantum and classical properties of the fields generated by two interlinked second-order non-linear interactions,” J. Mod. Opt. 51, 1031–1036 (2004). [CrossRef]
  31. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, New York, 1997).
  32. A. Andreoni, M. Bondani, M. C. A. Potenza, Yu. N. Denisyuk, and E. Puddu, “Boolean algebra operations performed on optical bits by the generation of holographic fields through second-order nonlinear interactions,” Rev. Sci. Instrum. 72, 2525–2531 (2001). [CrossRef]
  33. A. Andreoni, M. Bondani, and M. C. A. Potenza, “Combination tasks performed by second-harmonic-generated holograms,” Opt. Lett. 25, 1570–1572 (2000). [CrossRef]
  34. M. Bondani, A. Allevi, and A. Andreoni, “Holography by nondegenerate χ(2) interactions,” J. Opt. Soc. Am. B 20, 1–13 (2003). [CrossRef]
  35. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1988), Chap. 6.
  36. R. H. Katz, Contemporary Logic Design (Benjamin/Cummings, Redwood City, Calif., 1994), p. 44.
  37. M. Bondani, A. Allevi, A. Brega, E. Puddu, and A. Andreoni, “Difference-frequency-generated holograms of two-dimensional objects,” J. Opt. Soc. Am. B 21, 280–288 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited