OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 11 — Nov. 1, 2004
  • pp: 1889–1894

Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator

Silvia Bergamini, Benoît Darquié, Matthew Jones, Lionel Jacubowiez, Antoine Browaeys, and Philippe Grangier  »View Author Affiliations


JOSA B, Vol. 21, Issue 11, pp. 1889-1894 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001889


View Full Text Article

Acrobat PDF (338 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have generated multiple micrometer-sized optical dipole traps for neutral atoms using holographic techniques with a programmable liquid-crystal spatial light modulator. The setup allows storing of a single atom per trap and addressing and manipulation of individual trapping sites.

© 2004 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(090.1760) Holography : Computer holography
(090.2890) Holography : Holographic optical elements
(140.7010) Lasers and laser optics : Laser trapping

Citation
Silvia Bergamini, Benoît Darquié, Matthew Jones, Lionel Jacubowiez, Antoine Browaeys, and Philippe Grangier, "Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator," J. Opt. Soc. Am. B 21, 1889-1894 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-11-1889


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschr. Phys. 48, 771–783 (2000).
  2. I. E. Protsenko, G. Reymond, N. Schlosser, and P. Grangier, “Operation of a quantum phase gate using neutral atoms in microscopic dipole traps,” Phys. Rev. A 65, 052301 (2002).
  3. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côtè, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2011 (2000).
  4. G. K. Brennen, I. H. Deutsch, and P. S. Jessen, “Entangling dipole–dipole interactions for quantum logic with neutral atoms,” Phys. Rev. A 61, 062309 (2000).
  5. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060–1063 (1999).
  6. T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
  7. D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
  8. J. Mompart, K. Eckert, W. Ertmer, G. Birkl, and M. Lewenstein, “Quantum computing with spatially delocalized qubits,” Phys. Rev. Lett. 90, 147901 (2003).
  9. K. Eckert, J. Mompart, X. X. Yi, J. Schliemann, D. Bruss, G. Birkl, and M. Lewenstein, “Quantum computing in optical microtraps based on the motional states of neutral atoms,” Phys. Rev. A 66, 042317 (2002).
  10. O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature (London) 425, 937–940 (2003).
  11. N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 23005 (2002).
  12. G. Reymond, N. Schlosser, I. Protsenko, and P. Grangier, “Single-atom manipulations in a microscopic dipole trap,” Philos. Trans. R. Soc. London, Ser. A 361, 1527–1536 (2003).
  13. N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1026 (2001).
  14. D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
  15. S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett. 91, 213002 (2003).
  16. R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
  17. D. G. Grier, “A revolution in optical manipulation,” Nature (London) 424, 810–816 (2003).
  18. V. A. Soifer, V. V. Kotlyar, and L. L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, London, 1997).
  19. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
  20. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
  21. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express 11, 3562–3567 (2003), http://www.opticsexpress.org.
  22. W. J. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, “High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay,” Opt. Express 11, 2053–2059 (2003), http://www.opticsexpress.org.
  23. J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature (London) 404, 579–580 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited