OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 11 — Nov. 1, 2004
  • pp: 1895–1900

Spatial correlation vortices in partially coherent light: theory

Ivan D. Maleev, David M. Palacios, Arvind S. Marathay, and Grover A. Swartzlander, Jr.  »View Author Affiliations


JOSA B, Vol. 21, Issue 11, pp. 1895-1900 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001895


View Full Text Article

Enhanced HTML    Acrobat PDF (932 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spatial correlation vortex dipoles may form in the four-dimensional mutual coherence function when a partially coherent light source contains an optical vortex. Analytical and numerical investigations are made in near- and far-field regimes.

© 2004 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.1670) Coherence and statistical optics : Coherent optical effects
(100.4550) Image processing : Correlators
(260.0260) Physical optics : Physical optics
(350.5030) Other areas of optics : Phase

Citation
Ivan D. Maleev, David M. Palacios, Arvind S. Marathay, and Grover A. Swartzlander, Jr., "Spatial correlation vortices in partially coherent light: theory," J. Opt. Soc. Am. B 21, 1895-1900 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-11-1895


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974). [CrossRef]
  2. G. A. Swartzlander, Jr., “Optical vortex filaments,” in Optical Vortices, M. Vasnetsov and K. Staliunas, eds., Vol. 228 of Horizons in World Physics (Nova Science, Huntington, N.Y., 1999).
  3. A. Marathay, Elements of Optical Coherence Theory (Wiley, New York, 1982).
  4. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995).
  5. Z. Bouchal and J. Perina, “Non-diffracting beams with controlled spatial coherence,” J. Mod. Opt. 49, 1673–1689 (2002). [CrossRef]
  6. F. Gori, M. Santarsiero, R. Borghi, and S. Vicalvi, “Partially coherent sources with helicoidal modes,” J. Mod. Opt. 45, 539–554 (1998). [CrossRef]
  7. G. A. Swartzlander, Jr., “Peering into darkness with a vortex spatial filter,” Opt. Lett. 26, 497–499 (2001). [CrossRef]
  8. D. Palacios, D. Rozas, and G. A. Swartzlander, Jr., “Observed scattering into a dark optical vortex core,” Phys. Rev. Lett. 88, 103902 (2002). [CrossRef] [PubMed]
  9. H. Gross, “Numerical propagation of partially coherent laser beams through optical systems,” Opt. Laser Technol. 29, 257–260 (1997). [CrossRef]
  10. H. Schouten, G. Gbur, T. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28, 968–970 (2003). [CrossRef] [PubMed]
  11. G. Gbur and T. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003). [CrossRef]
  12. G. Bogatyryova, C. Fel’de, P. Polyanskii, S. Ponomarenko, M. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003). [CrossRef] [PubMed]
  13. I. D. Maleev and G. A. Swartzlander, Jr., “Composite optical vortices,” J. Opt. Soc. Am. B 20, 1169–1176 (2003). [CrossRef]
  14. D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, Jr., “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004). [CrossRef] [PubMed]
  15. D. Rozas, Z. S. Sacks, and G. A. Swartzlander, Jr., “Experimental observation of fluidlike motion of optical vortices,” Phys. Rev. Lett. 79, 3399–3402 (1997). [CrossRef]
  16. Z. S. Sacks, D. Rozas, and G. A. Swartzlander, Jr., “Holographic formation of optical votex filaments,” J. Opt. Soc. Am. B 15, 2226–2234 (1998). [CrossRef]
  17. G. A. Swartzlander, Jr., “Optical vortex solitons,” in Spatial Solitons, S. Trillo and W. Torruellas, eds. (Springer-Verlag, Berlin, 2001), p. 299.
  18. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C ++ (Cambridge U. Press, Cambridge, 2002), p. 501.
  19. The value of χ may diverge as the intensity vanishes. To prevent this problem we truncate the value of χ when the intensity falls below 2% of the maximum value.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited