OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 11 — Nov. 1, 2004
  • pp: 1919–1928

Differential multipole method for microstructured optical fibers

S. Campbell, R. C. McPhedran, C. Martijn de Sterke, and L. C. Botten  »View Author Affiliations


JOSA B, Vol. 21, Issue 11, pp. 1919-1928 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001919


View Full Text Article

Acrobat PDF (217 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the differential multipole method, an extended multipole method used to calculate the modes of microstructured optical fibers with noncircular inclusions. We use a multipole expansion centered on each inclusion and a differential method to calculate the scattering properties of the individual inclusions. Representative results for a fiber with one ring of elliptical inclusions are presented, and a direct comparison is made with an existing method. The new method is also applied to a microstructured optical fiber with seven rings of elliptical inclusions, which is found, in effect, to support a single polarization of the fundamental mode.

© 2004 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4510) Fiber optics and optical communications : Optical communications

Citation
S. Campbell, R. C. McPhedran, C. Martijn de Sterke, and L. C. Botten, "Differential multipole method for microstructured optical fibers," J. Opt. Soc. Am. B 21, 1919-1928 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-11-1919


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
  2. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode resonances in air-silica microstructured optical fibres,” J. Lightwave Technol. 18, 1084–1100 (2000).
  3. M. D. Feit and J. J. A. Fleck, “Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method,” Appl. Opt. 19, 2240–2246 (1980).
  4. N. A. Issa and L. Poladian, “Vector wave expansion method for leaky modes of microstructured optical fibers,” J. Lightwave Technol. 21, 1005–1012 (2003).
  5. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
  6. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
  7. E. Popov and M. Nevière, “Maxwell equations in Fourier space: a fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media,” J. Opt. Soc. Am. B 18, 2886–2894 (2001).
  8. M. Nevière and E. Popov, Light Propagation in Periodic Media (Marcel Dekker, New York, 2003).
  9. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336–1338 (2004).
  10. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  11. W. Wijngaard, “Guided normal modes of two parallel circular dielectric rods,” J. Opt. Soc. Am. 63, 944–949 (1973).
  12. K. M. Lo, R. C. McPhedran, I. M. Bassett, and G. W. Milton, “An electromagnetic theory of dielectric waveguides with multiple embedded cylinders,” J. Lightwave Technol. 12, 396–410 (1994).
  13. C. Chang and H. Chang, “Theory of the circular harmonics expansion method for multiple-optical-fiber system,” J. Lightwave Technol. 12, 415–417 (1994).
  14. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
  15. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
  16. N. Issa, Optical Fibre Technology Centre, 206 National Innovation Centre, Australian Technology Park, Eveleigh New South Wales 1430, Australia, n.issa@oftc.usyd.edu.au (personal communication, 2003).
  17. M. J. Steel and R. M. Osgood, Jr., “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229–231 (2001).
  18. M. J. Steel and R. M. Osgood, Jr., “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. Lightwave Technol. 19, 495–503 (2001).
  19. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
  20. J. C. Knight, T. A. Birks, and P. St. J. Russell, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A 15, 748–752 (1998).
  21. B. T. Kuhlmey, R. C. McPhedran, C. Martijn de Sterke, and O. A. Robinson, “Microstructured optical fibers: where’s the edge?” Opt. Express 10, 1285–1290 (2002), http://www.opticsexpress.org.
  22. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photonics Technol. Lett. 16, 182–184 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited