OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 11 — Nov. 1, 2004
  • pp: 1929–1938

Advanced design of a multichannel fiber Bragg grating based on a layer-peeling method

Hongpu Li, Toru Kumagai, Kazuhiko Ogusu, and Yunlong Sheng  »View Author Affiliations


JOSA B, Vol. 21, Issue 11, pp. 1929-1938 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001929


View Full Text Article

Acrobat PDF (266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multichannel fiber Bragg grating (FBG) design based on a discrete layer-peeling method is described. This novel method enables us to design any kind of multichannel FBG in which the spectrum responses of the channels can be either identical or nonidentical. In particular, a nine-channel dispersion-free FBG and a nine-channel nonlinearly chirped FBG used simultaneously as chromatic dispersion and dispersion slope compensators are described. Unlike the general multichannel FBG designed by a sampling method, these two gratings have ideal flat-topped profiles in both the transmission and the reflection spectra. By optimally detuning the relative phases for the multiple-spectrum channels with an iterative layer-peeling method, we can make maximum use of length-limited photosensitive fiber. Moreover, we show numerically that one can reduce or eliminate the oscillation that inherently exists in the index-change envelope of our multichannel FBG by accepting a decreased extinction ratio of the in-band signal to the out-of-band noises.

© 2004 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components
(230.1480) Optical devices : Bragg reflectors

Citation
Hongpu Li, Toru Kumagai, Kazuhiko Ogusu, and Yunlong Sheng, "Advanced design of a multichannel fiber Bragg grating based on a layer-peeling method," J. Opt. Soc. Am. B 21, 1929-1938 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-11-1929


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. Eggleton, P. A. Krug, L. Poladian, and F. Oullette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
  2. F. Oullette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31, 899–901 (1995).
  3. K.-M. Feng, J.-X. Cai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, “Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly-chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 373–375 (1999).
  4. W. H. Loh, F. Q. Zhou, and J. J. Pan, “Sampled fiber grating based-dispersion slope compensator,” IEEE Photon. Technol. Lett. 11, 1280–1282 (1999).
  5. J.-X. Cai, K.-M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinear chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 1455–1457 (1999).
  6. Y. Painchaud, A. Mailoux, H. Chotard, E. Pelletier, and M. Guy, “Multi-channel fiber Bragg gratings for dispersion and slope compensation,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper THAA5.
  7. Z. Pan, Y. W. Song, C. Yu, Y. Wang, Q. Yu, J. Poplek, H. Li, Y. Li, and A. E. Willner, “Tunable chromatic dispersion compensation in 40-Gb/s systems using nonlinearly chirped fiber Bragg gratings,” J. Lightwave Technol. 12, 2239–2245 (2002).
  8. W. Song, S. M. R. Motaghian Nezam, D. Starodubov, J. E. Rothenberg, X. Pan, H. Li, R. Wilcox, J. Poplek, R. Caldwell, V. Grubsky, and A. E. Willner, “Tunable interchannel broadband dispersion-slope compensation for 10-Gb/s WDM systems using a nonchannelized third-order chirped FBG,” IEEE Photon. Technol. Lett. 15, 144–146 (2003).
  9. X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive index and temperature measurement,” Opt. Lett. 26, 774–776 (2001).
  10. V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
  11. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
  12. J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann fiber Bragg gratings and phase-only sampling for high channel counts,” IEEE Photon. Technol. Lett. 14, 1309–1311 (2002).
  13. H. Li, Y. Sheng, Y. Li, and J. E. Rothenber, “Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation,” J. Lightwave Technol. 13, 2074–2083 (2003).
  14. H. Li and Y. Sheng, “Direct design of multi-channel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photon. Technol. Lett. 15, 1252–1254 (2003).
  15. A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39, 91–98 (2003).
  16. K. Y. Kolossovski, R. A. Sammut, A. V. Buryak, and D. Y. Stepanov, “Three-stage design optimization for multi-channel fibre Bragg gratings,” Opt. Express 11, 1029–1038 (2003), http://www.opticsexpress.org.
  17. A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, New York, 1984).
  18. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).
  19. J. Skaar, L. Wang, and T. Erdogen, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001).
  20. A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the simulated annealing algorithm,” ACM Trans. Math. Software 13, 262–280 (1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited