OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 11 — Nov. 1, 2004
  • pp: 1939–1947

Characterization of the diffraction efficiency of new holographic gratings with a nematic film–polymer-slice sequence structure

Roberto Caputo, Alessandro Veltri, Cesare P. Umeton, and Andrey V. Sukhov  »View Author Affiliations


JOSA B, Vol. 21, Issue 11, pp. 1939-1947 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001939


View Full Text Article

Acrobat PDF (599 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have performed a first characterization of the diffraction efficiency of gratings written in liquid-crystalline composite materials by the interference pattern of two curing beams. The grating fringes consist of polymer slices separated by films of continuous nematic phase. The dependence of the diffraction efficiency on temperature reveals a nonmonotonic behavior, with several maxima and minima. The shapes of curves are dependent on slight changes in the initial concentration of the nematic component of the mixture; the number of extrema increases with an increase of this concentration. The dependence of the diffraction efficiency on an applied external voltage also appears to be nonmonotonic: The shape depends on the sample’s temperature. Both switch-on and switch-off responses have been observed. The behavior of our gratings can be explained in the framework of the conventional Kogelnik theory for the diffraction efficiency of Bragg gratings.

© 2004 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.2900) Materials : Optical storage materials
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(310.6860) Thin films : Thin films, optical properties

Citation
Roberto Caputo, Alessandro Veltri, Cesare P. Umeton, and Andrey V. Sukhov, "Characterization of the diffraction efficiency of new holographic gratings with a nematic film–polymer-slice sequence structure," J. Opt. Soc. Am. B 21, 1939-1947 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-11-1939


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. D. Margerum, A. M. Lackner, E. Ramos, G. W. Smith, N. A. Vaz, J. L. Kohler, and C. R. Allison, “Polymer dispersed liquid crystal film devices, and method of forming the same,” U.S. patent 4, 938, 568 (July 3, 1990).
  2. J. D. Margerum, A. M. Lackner, E. Ramos, G. W. Smith, N. A. Vaz, J. L. Kohler, and C. R. Allison, “Polymer dispersed liquid crystal film devices,” U.S. patent 5, 096, 282 (March 17, 1992).
  3. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
  4. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
  5. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electro-optical switching characteristics of volume holograms in polymer dispersed liquid crystals,” J. Nonlinear Opt. Phys. Mater. 5, 89–98 (1996).
  6. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
  7. K. Tanaka, K. Kato, M. Date, and S. Sakai, “Optimization of holographic PDLC for reflective color display applications,” Dig. Tech. Papers SID 26, 267 (1995).
  8. K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys., Part 2 38, L277–L278 (1999).
  9. M. De Sarkar, J. Qi, and G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer 43, 7335–7344 (2002).
  10. K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81, 4736–4738 (2002).
  11. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
  12. P. A. Kossyrev and G. P. Crawford, “Formation dynamics of diffraction gratings in reactive liquid crystals,” Appl. Phys. Lett. 79, 296–298 (2001).
  13. C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
  14. D. Nwabunma, H. W. Chiu, and T. Kyu, “Theoretical investigation on dynamics of photopolymerization-induced phase separation and morphology development in nematic liquid crystal/polymer mixtures,” J. Chem. Phys. 113, 6429–6436 (2000).
  15. T. Kyu, D. Nwabunma, and H. W. Chiu, “Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation,” Phys. Rev. E 63, 061802 (2001).
  16. D. Nwabunma and T. Kyu, “Photopolymerization and morphology development in mixtures of eutectic nematic liquid crystal and photocurable monomer,” Polymer 42, 801–806 (2001).
  17. A. Y. G. Fuh, C. R. Lee, C. C. Liao, K. J. Shyu, P. M. Liu, and K. Y. Lo, “Dynamic studies of two-beam coupling on the holographic gratings based on liquid crystal-polymer composite films,” Opt. Commun. 187, 193–198 (2001).
  18. C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (H-PDLC) formation,” Mol. Cryst. Liq. Cryst. 358, 185–198 (2001).
  19. M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
  20. M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Electro-optical properties of polymer dispersed liquid crystal transmission gratings,” Mol. Cryst. Liq. Cryst. 375, 455–465 (2002).
  21. D. Duca, A. V. Sukhov, and C. Umeton, “Detailed experimental investigation on recording of switchable diffraction gratings in polymer dispersed liquid crystal films by UV laser curing,” Liq. Cryst. 26, 931–937 (1999).
  22. A. Y. G. Fuh, C. R. Lee, and Y. H. Ho, “Thermally and electrically switchable gratings based on polymer-ball-type polymer-dispersed liquid-crystal films,” Appl. Opt. 41, 4585–4589 (2002).
  23. C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, “Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs),” Mol. Cryst. Liq. Cryst. 359, 647–659 (2001).
  24. D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
  25. C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
  26. T. Karasawa and Y. Taketomi, “Elliptically-deformed spherulitic crystallization observed in the formation of μm-sized periodic grating structures in photopolymerized prepolymer/liquid crystal material systems,” J. Appl. Phys. 88, 5071–5078 (2000).
  27. T. Karasawa and Y. Taketomi, “Effects of material systems on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys., Part 1 36, 6388–6392 (1997).
  28. R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Dynamics of mass transfer caused by the photoinduced spatially inhomogeneous modulation of mobility in a multicomponent medium,” J. Exp. Theor. Phys. 92, 28–36 (2001).
  29. R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
  30. R. Caputo, C. Umeton, A. Veltri, A. Sukhov, and N. Tabiryan, “Realization of regular layered structures made of thin liquid crystal films separated by slices of polymeric materials (POLICRYPS),” Italian patent request TO2003A000530 (July 9, 2003).
  31. R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, “Realization of a new kind of switchable holographic grating made of liquid crystal films separated by slices of polymeric material (POLICRYPS),” Opt. Lett. 29, 1261–1263 (2004).
  32. R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “A new kind of photopolymerisation induced diffraction gratings in liquid crystalline composite materials,” Mol. Cryst. Liq. Cryst. 372, 263–274 (2001).
  33. Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).
  34. B. T. Hallam, C. V. Brown, and J. R. Sambles, “Quantification of the surface- and bulk-order parameters of a homogeneously aligned nematic liquid crystal using fully leaky guided modes,” J. Appl. Phys. 86, 6682–6689 (1999).
  35. P. J. de Gennes, Physics of Liquid Crystals (Oxford U. Press, Oxford, 1974).
  36. G. Abbate, A. d’Alessandro, and C. Umeton, “New composite liquid-crystalline materials for opto-electronic devices,” Italian project PRIN 2003 #2003024923.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited