OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 11 — Nov. 1, 2004
  • pp: 1969–1980

Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse

Takashi Hori, Norihiko Nishizawa, Toshio Goto, and Makoto Yoshida  »View Author Affiliations


JOSA B, Vol. 21, Issue 11, pp. 1969-1980 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001969


View Full Text Article

Acrobat PDF (554 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the analysis of ultrawideband supercontinuum generation in a highly nonlinear dispersion-shifted fiber. A >1000-nm-spanning white-light continuum is generated by pumping the femtosecond fiber laser pulse at λ=1.56 μm into the extreme vicinity of the zero-dispersion wavelength of the fiber. The supercontinuum pulses are characterized with the experimentally observed sonogram traces. The numerical calculation based on the nonlinear Schrödinger equation is used to investigate the mechanism of the supercontinuum generation, and these results are in good agreement with experiment. We show that there are two stages with different spectral-broadening processes in the propagation evolution. Self-phase modulation and group-velocity dispersion play an important role in the first spectral broadening. Through an increase the propagation distance, further spectral broadening occurs due to the soliton self-frequency shift and the trapping effect by the redshifted soliton pulse through cross-phase modulation. Additionally, we show that the temporal and spectral interferences between the generated supercontinuum components cause the oscillating fine structure on the temporal waveform and the spectrum.

© 2004 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7100) Ultrafast optics : Ultrafast measurements

Citation
Takashi Hori, Norihiko Nishizawa, Toshio Goto, and Makoto Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-11-1969


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
  2. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
  4. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
  6. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
  7. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
  8. J. M. Harbold, F. Ö. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, “Long-wavelength continuum generation about the second dispersion zero of a tapered fiber,” Opt. Lett. 27, 1558–1560 (2002).
  9. I. N. Duling, “Subpicosecond all-fiber erbium laser,” Electron. Lett. 27, 544–545 (1991).
  10. D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fiber laser,” Electron. Lett. 27, 730–732 (1991).
  11. M. Nakazawa, E. Yoshida, and Y. Kimura, “Generation of 98 fs optical pulses directly from an erbium-doped fiber ring laser at 1.57 μm,” Electron. Lett. 29, 63–65 (1993).
  12. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
  13. W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “All-solid-state subpicosecond passively mode locked erbium-doped fiber laser,” Appl. Phys. Lett. 63, 4–6 (1993).
  14. M. E. Fermann, L.-M. Yang, M. L. Stock, and M. J. Andrejco, “Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses,” Opt. Lett. 19, 43–45 (1994).
  15. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
  16. N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. App. Phys. 40, L365–L367 (2001).
  17. J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum based on fiber laser system,” IEEE Photon. Technol. Lett. (to be published).
  18. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28, 643–645 (2003).
  19. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926 (2002).
  20. A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182 (2002).
  21. A. Orgigosa-Blanch, J. C. Knight, and P. St. J. Russell, “Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 2567–2572 (2002).
  22. B. R. Washburn, S. E. Ralph, and R. S. Windeler, “Ultrashort pulse propagation in air–silica microstructure fiber,” Opt. Express 10, 575–580 (2002), http://www. opticsexpress.org.
  23. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express 10, 1083–1098 (2002), http://www.opticsexpress.org.
  24. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
  25. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
  26. X. Fang, N. Karasawa, R. Morita, R. S. Windelaer, and M. Yamashita, “Nonlinear propagation of a-few-optical-cycle pulses in a photonic crystal fiber—experimental and theoretical studies beyond the slowly varying-envelope approximation,” IEEE Photon. Technol. Lett. 15, 233–235 (2003).
  27. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fibers: simulations and experiments,” Opt. Express 10, 1215–1221 (2002), http://www.opticsexpress.org.
  28. N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27, 152–154 (2002).
  29. N. Nishizawa and T. Goto, “Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength,” Opt. Express 10, 1151–1159 (2002), http://www.opticsexpress.org.
  30. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Wideband and non-mechanical sonogram measurement by use of electronically controlled, wavelength-tunable, femtosecond soliton pulse,” J. Opt. Soc. Am. B 20, 2410–2417 (2003).
  31. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
  32. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
  33. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
  34. T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
  35. T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
  36. V. Wong and I. A. Walmsley, “Ultrashort-pulse characterization from dynamic spectrograms by iterative phase retrieval,” J. Opt. Soc. Am. B 14, 944–949 (1997).
  37. D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1589 (1999).
  38. K. Taira and K. Kikuchi, “Optical sampling system at 1.55 μm for the measurement of pulse waveform and phase employing sonogram characterization,” IEEE Photon. Technol. Lett. 13, 505–507 (2001).
  39. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, 2001).
  40. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
  41. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited