OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 11 — Nov. 1, 2004
  • pp: 1981–2007

Optical, vibrational, thermal, electrical, damage, and phase-matching properties of lithium thioindate

Sandrine Fossier, Sophie Salaün, Jacques Mangin, Olivier Bidault, Isabelle Thénot, Jean-Jacques Zondy, Weidong Chen, Fabian Rotermund, Valentin Petrov, Plamin Petrov, Jes Henningsen, Alexander Yelisseyev, Ludmila Isaenko, Sergei Lobanov, Ona Balachninaite, Gintas Slekys, and Valdas Sirutkaitis  »View Author Affiliations

JOSA B, Vol. 21, Issue 11, pp. 1981-2007 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (525 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Lithium thioindate (LiInS2) is a new nonlinear chalcogenide biaxial material transparent from 0.4 to 12 µm that has been successfully grown in large sizes and with good optical quality. We report on new physical properties that are relevant for laser and nonlinear optics applications. With respect to AgGaS(e)2 ternary chalcopyrite materials, LiInS2 displays a nearly isotropic thermal expansion behavior, a 5-times-larger thermal conductivity associated with high optical damage thresholds, and an extremely low-intensity-dependent absorption, allowing direct high-power downconversion from the near-IR to the deep mid-IR. Continuous-wave difference-frequency generation (5–11 µm) of Ti:sapphire laser sources is reported for the first time to our knowledge.

© 2004 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.4330) Materials : Nonlinear optical materials
(160.6000) Materials : Semiconductor materials
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

Sandrine Fossier, Sophie Salaün, Jacques Mangin, Olivier Bidault, Isabelle Thénot, Jean-Jacques Zondy, Weidong Chen, Fabian Rotermund, Valentin Petrov, Plamin Petrov, Jes Henningsen, Alexander Yelisseyev, Ludmila Isaenko, Sergei Lobanov, Ona Balachninaite, Gintas Slekys, and Valdas Sirutkaitis, "Optical, vibrational, thermal, electrical, damage, and phase-matching properties of lithium thioindate," J. Opt. Soc. Am. B 21, 1981-2007 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. C. Bhar and R. C. Smith, “Optical properties of II-IV-V2 and I-III-VI2 crystals with particular reference to transmission limits,” Phys. Status Solidi A 13, 157–168 (1972). [CrossRef]
  2. J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel, “Energy bands of AgInS2 in the chalcopyrite and orthorhombic structures,” Phys. Rev. B 9, 1719–1723 (1974). [CrossRef]
  3. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd revised ed. (Springer, Berlin, 1999).
  4. K. Stoll, J.-J. Zondy, and O. Acef, “Fourth-harmonic generation of a continuous-wave CO2 laser by use of an AgGaSe2/ZnGeP2 doubly resonant device,” Opt. Lett. 22, 1302–1304 (1997). [CrossRef]
  5. D. Lee, T. Kaing, and J.-J. Zondy, “An all-diode-laser-based, dual-cavity AgGaS2 cw difference-frequency source for the 9–11 μm range,” Appl. Phys. B 67, 363–367 (1998). [CrossRef]
  6. A. Douillet and J.-J. Zondy, “Low-threshold, self-frequency-stabilized AgGaS2 continuous-wave subharmonic optical parametric oscillator,” Opt. Lett. 23, 1259–1261 (1998). [CrossRef]
  7. A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16, 1481–1498 (1999). [CrossRef]
  8. R. Hoppe, “Ternäre Oxide der Alkalimetalle,” Bull. Soc. Chim. Fr. 1965, 1115–1121 (1965).
  9. G. D. Boyd, H. M. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of LiInS2,” J. Appl. Phys. 44, 2809–2812 (1973). [CrossRef]
  10. T. Kamijoh and K. Kuriyama, “Single crystal growth of LiInS2,” J. Cryst. Growth 46, 801–803 (1979). [CrossRef]
  11. T. Kamijoh and K. Kuriyama, “Blue-band emission in LiInS2 crystals,” J. Appl. Phys. 51, 1827–1828 (1981). [CrossRef]
  12. T. Kamijoh, T. Nozaki, and K. Kuriyama, “A photoluminescence study of lithium ternary compounds,” Nuovo Cimento 2D, Ser. 1, 2029–2033 (1983).
  13. K. Kuriyama, T. Kato, and A. Takahashi, “Optical band gap and blue-band emission of a LiInS2 single crystal,” Phys. Rev. B 46, 15518–15519 (1992). [CrossRef]
  14. K. Kuriyama, T. Kato, and A. Takahashi, “Blue-band emission of LiInS2 single crystals grown by the indium solution method,” Jpn. J. Appl. Phys. 32, Suppl. 322–23, 615–617 (1993). [CrossRef]
  15. K. Kuriyama and T. Kato, “Optical band gap and photoluminescence studies in blue-band region of Zn-doped LiInS2 single crystals,” Solid State Commun. 89, 959–962 (1994). [CrossRef]
  16. M. I. Golovei, E. Yu. Peresh, and E. E. Semrad, “Production and characteristics of semiconductor materials of complex composition, promising for quantum electronics and optoelectronics,” Kvantovaya Elektronika, Kiev 20, 93–103 (1981).
  17. K. Kuriyama and J. Saitoh, “Preparation and optical properties of LiInS2 thin films,” Thin Solid Films 111, 331–337 (1984). [CrossRef]
  18. L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, Y. Malakhov, L. Dovlitova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000). [CrossRef]
  19. A. Yelisseyev, L. Isaenko, S. Lobanov, J.-J. Zondy, A. Douillet, I. Thénot, Ph. Kupecek, G. Mennerat, J. Mangin, S. Fossier, and S. Salaün, “New ternary sulfide for double applications in laser schemes,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 2000), pp. 561–568.
  20. G. M. Knippels, A. P. G. van der Meer, A. M. MacLeod, A. Yelisseyev, L. Isaenko, S. Lobanov, I. Thénot, and J.-J. Zondy, “Mid-infrared (2.75–6.0 μm) second-harmonic generation in LiInS2,” Opt. Lett. 26, 617–619 (2001). [CrossRef]
  21. F. Rotermund, V. Petrov, F. Noack, L. Isaenko, A. Yelisseyev, and S. Lobanov, “Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm,” Appl. Phys. Lett. 78, 2623–2625 (2001). [CrossRef]
  22. J. Brückner, V. Krämer, E. Nowak, V. Riede, and B. Schumann, “Crystal growth and characterization of LiInS2,” Cryst. Res. Technol. 31, Suppl., 15–18 (1996).
  23. A. Eifler, V. Riede, J. Brückner, S. Weise, V. Krämer, G. Lippold, W. Schmitz, K. Bente, and W. Grill, “Band gap energies and lattice vibrations of the lithium ternary compounds LiInSe2, LiInS2, LiGaSe2 and LiGaS2,” Jpn. J. Appl. Phys., 39, Suppl. 39–1, 279–281 (2000). [CrossRef]
  24. S. Pearl, S. Fastig, Y. Ehrlich, and R. Lavi, “Limited efficiency of a silver selenogallate optical parametric oscillator caused by two-photon absorption,” Appl. Opt. 40, 2490–2492 (2001). [CrossRef]
  25. L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: a biaxial ternary chalcogenide crystal for nonlinear optical applications in the mid-infrared,” J. Appl. Phys. 91, 9475–9480 (2002). [CrossRef]
  26. S. K. Kovach, E. E. Semrad, Yu. V. Voroshilov, V. S. Gerasimenko, V. Yu. Slivka, and N. P. Stasyuk, “Preparation and principal physicochemical properties of alkali metal indates and thioindates,” Inorg. Mater. 14, 1693–1697 (1978); [transl. from Izv. Akad. Nauk SSSR, Neorg. Mater. 14, 2172–2176 (1978)].
  27. Z. Z. Kish, V. B. Lazarev, E. E. Semrad, H. Yu. Peresh, and I. V. Galagovets, “Some properties of single crystals of LiInS2 and NaInS2,” Inorg. Mater. 20, 647–649 (1984); [transl. from Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 750–752 (1984)].
  28. J. Brückner, “I-III-VI Verbindungshalbleiter mit Lithium als Gruppe I-Element: Kristallzüchtung und Charakterisierung,” Ph.D dissertation thesis (Albert-Ludwigs University, Freiburg, Germany, 1997).
  29. L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Opto-Electron. Rev. 9, 135–141 (2000).
  30. L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Proc. SPIE 4412, 342–350 (2001). [CrossRef]
  31. Z. Z. Kish, E. Yu. Peresh, V. B. Lazarev, and E. E. Semrad, “Systematics and the rules of variations in the properties of AIBIIIC2VI-type compounds,” Inorg. Mater. 23, 697–703 (1987); [transl. from Izv. Akad. Nauk SSSR, Neorg. Mater. 23, 777–784 (1987)].
  32. R. S. Feigelson and R. K. Route, “Recent developments in the growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. (Bellingham) 26, 113–119 (1987). [CrossRef]
  33. A. Yelisseyev, S. Lobanov, L. Isaenko, and J.-J. Zondy, “Spectroscopic study of neodymium-doped LiInS2 single crystals,” Proc. SPIE 3749, 687–688 (1999). [CrossRef]
  34. Z. Z. Kish, A. S. Kanishcheva, Yu. N. Mikhailov, V. B. Lazarev, E. E. Sempad, and E. Yu. Peresh, “Synthesis and crystal structure of lithium thioindate LiInS2,” Soviet Physics/Doklady (Physical Chemistry) 30, 36–38 (1985); [transl. from Dokl. Akad. Nauk SSSR 280, 398–401 (1985)].
  35. D. A. Roberts, “Simplified chracterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992). [CrossRef]
  36. American National Standard, IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176-1987, IEEE, New York, 1988.
  37. G. Kühn, E. Piel, H. Neumann, and E. Nowak, “Heat capacity of LiInS2, LiInSe2, and LiInTe2 between 300 and 550 K,” Cryst. Res. Technol. 22, 265–269 (1987). [CrossRef]
  38. H. Sobotta, H. Neumann, V. Riede, and G. Kühn, “Lattice vibrations and interatomic forces in LiInS2,” Cryst. Res. Technol. 21, 1367–1371 (1986). [CrossRef]
  39. H. Neumann, G. Kühn, and W. Möller, “High-temperature specific heat of AgInS2 and AgGaSe2,” Cryst. Res. Technol. 20, 1225–1229 (1985). [CrossRef]
  40. J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826–834 (1993). [CrossRef]
  41. P. Korczak and C. B. Staff, “Liquid encapsulated Czochralski growth of silver thiogallate,” J. Cryst. Growth 24/25, 386–389 (1974). [CrossRef]
  42. G. W. Iseler, “Thermal expansion and seed Bridgman growth of AgGaSe2,” J. Cryst. Growth 41, 146–150 (1977). [CrossRef]
  43. J.-J. Zondy and D. Touahri, “Updated thermo-optic coefficients of AgGaS2 from temperature-tuned noncritical 3ω−ω→2ω infrared parametric amplification,” J. Opt. Soc. Am. B 14, 1331–1338 (1997). [CrossRef]
  44. J. Mangin, S. Salaün, S. Fossier, P. Strimer, J.-J. Zondy, L. Isaenko, and A. Yelisseyev, “Optical properties of lithium thioindate,” in Growth, Fabrication, Devices, and Applications of Laser and Nonlinear Materials, J. W. Pierce and K. I. Schaffers, eds., Proc. SPIE 4268, 49–57 (2001). [CrossRef]
  45. T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142, 570–574 (1966). [CrossRef]
  46. S. Salaün, A. Bulou, J. Y. Gesland, and P. Simon, “Lattice dynamics of the fluoride scheelite CaZnF4,” J. Phys. Condens. Matter 12, 7395–7408 (2000). [CrossRef]
  47. V. S. D’Ordyai, V. A. Stefanovich, E. I. Pan’ko, V. B. Lazarev, E. Yu. Peresh, and Z. Z. Kish, “Raman scattering in LiInS2,” Inorg. Mater. 24, 461–464 (1988); [transl. from Izv. Akad. Nauk SSSR, Neorg. Mater. 24, 555–559 (1988)].
  48. H. Neumann, “Vibrational properties of LiGaO2. II: Theoretical model considerations,” Cryst. Res. Technol. 21, 1361–1366 (1986). [CrossRef]
  49. H. Neumann, “Lattice vibrations in AIBIIIC2VI chalcopyrite compounds,” Helv. Phys. Acta 58, 337–346 (1985).
  50. C. Ebbers, Lawrence Livermore National Laboratory, Livermore, Calif. 94550, personal communication, 2000).
  51. S. Fossier, “Métrologie des propriétés optiques de cristaux massifs; Etude de LiInS 2, matriau optiquement non linaire pour l’infrarouge moyen,” Thèse de Doctorat (Universit de Bourgogne, France, 2002).
  52. T. J. Negran, H. M. Kasper, and A. M. Glass, “Pyroelectric and electrooptic effects in LiInS2 and LiInSe2,” Mater. Res. Bull. 8, 743–748 (1973). [CrossRef]
  53. C. G. B. Garrett, “Nonlinear optics, anharmonic oscillators and pyroelectricity,” IEEE J. Quantum Electron. QE-4, 70–84 (1968). [CrossRef]
  54. R. A. Soref, “Interrelation of pyroelectric and nonlinear optical coefficients in ferroelectric crystals,” IEEE J. Quantum Electron. QE-5, 126–129 (1969). [CrossRef]
  55. O. Bidault, S. Fossier, J. Mangin, P. Strimer, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Study of the pyroelectricity in LiInS2 crystal,” Solid State Commun. 121, 207–211 (2002). [CrossRef]
  56. Ch. Ebbers, “Summary of known nonlinear properties of LiInS 2,” preprint UCRL-ID-116744 (Lawrence Livermore National Laboratories, Livermore, Calif., 1994).
  57. Yu. M. Andreev, L. G. Geiko, P. P. Geiko, and S. G. Grechin, “Optical properties of a nonlinear LiInS2 crystal,” Quantum Electron. 31, 647–648 (2001); [transl. from Kvantovaya Elektron. (Moscow) 31, 647–648 (2001)]. [CrossRef]
  58. Yu. M. Andreev, V. V. Badikov, P. P. Geiko, and S. G. Grechin, “Fulfillments of phase-matching conditions and optical characteristics of lithium thioindate nonlinear crystals,” Atmos. Oceanic Opt. 14, 1001–1004 (2001); [transl. from Optika Atmosphery i Okeana 14, 1087–1090 (2001)].
  59. V. V. Badikov, V. I. Chizhikov, V. V. Efimenko, T. D. Efimenko, V. L. Panyutin, G. S. Shevyrdyaeva, and S. I. Scherbakov, “Optical properties of lithium indium selenide,” Opt. Mater. (Amsterdam) 23, 575–581 (2003). [CrossRef]
  60. V. G. Dmitriev and D. N. Nikogosyan, “Effective nonlinearity coefficients for three-wave interactions in biaxial crystals of mm2 point group symmetry,” Opt. Commun. 95, 173–182 (1993). [CrossRef]
  61. K. V. Diesperov and V. G. Dmitriev, “Effective nonlinear coefficient for sum-frequency generation with collinear phase matching calculated taking account of the birefringence in biaxial crystals,” Quantum Electron. 27, 433–436 (1997); [transl. from Kvantovaya Elektronika (Moscow) 24, 445–448 (1997)]. [CrossRef]
  62. M. V. Hobden, “Phase-matched second-harmonic generation in biaxial crystals,” J. Appl. Phys. 38, 4365–4372 (1967). [CrossRef]
  63. J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984). [CrossRef]
  64. F. Brehat and B. Wyncke, “Calculation of double-refraction walk-off angle along the phase-matching directions in non-linear biaxial crystals,” J. Phys. B: At. Mol. Opt. Phys. 22, 1891–1898 (1989). [CrossRef]
  65. J. Yao, W. Sheng, and W. Shi, “Accurate calculation of the optimum phase-matching parameters in three-wave interactions with biaxial nonlinear-optical crystals,” J. Opt. Soc. Am. B 9, 891–902 (1992). [CrossRef]
  66. W. Q. Zhang, “Optical parametric generation for biaxial crystals,” Opt. Commun. 105, 226–232 (1994). [CrossRef]
  67. V. I. Zadorozhnii, “Improved analytical method for calculating the parameters of phase-matched nonlinear-optical interactions in biaxial crystals,” Opt. Commun. 176, 489–501 (2000). [CrossRef]
  68. W. Q. Zhang, “Group-velocity matching in the mixing of three noncollinear phase-matched waves for biaxial crystal,” Opt. Commun. 221, 191–197 (2003). [CrossRef]
  69. M. H. van der Mooren, Th. Rasing, and H. J. A. Bluyssen, “Determination of the type I phase matching angles and conversion efficiency in KTP,” Appl. Opt. 34, 934–937 (1995). [CrossRef] [PubMed]
  70. F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, “Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,” Electron. Lett. 38, 561–563 (2002). [CrossRef]
  71. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000). [CrossRef] [PubMed]
  72. F. Rotermund and V. Petrov, “Femtosecond noncollinear optical parametric amplification in the mid-infrared range with 1.25 μm pumping,” Jpn. J. Appl. Phys., Suppl. 40, 3195–3200 (2001). [CrossRef]
  73. H. J. Liu, G. F. Chen, W. Zhao, Y. S. Wang, T. Wang, and S. H. Zhao, “Phase-matching analysis of noncollinear optical parametric process in nonlinear anisotropic crystals,” Opt. Commun. 197, 507–514 (2001). [CrossRef]
  74. J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μm in flux-grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004–2015 (1994). [CrossRef]
  75. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990). [CrossRef]
  76. J.-J. Zondy, “Comparative theory of walkoff-limited type II versus type I second harmonic generation with Gaussian beams,” Opt. Commun. 81, 427–440 (1991). [CrossRef]
  77. B. Boulanger, J. P. Feve, G. Marnier, C. Bonnin, P. Villeval, and J. J. Zondy, “Absolute measurement of quadratic nonlinearities from phase-matched second-harmonic generation in a single KTP crystal cut as a sphere,” J. Opt. Soc. Am. B 14, 1380–1386 (1997). [CrossRef]
  78. J.-J. Zondy, D. Touahri, and O. Acef, “Absolute value of the d36 nonlinear coefficient of AgGaS2: prospect for a low-threshold doubly resonant oscillator-based 3:1 frequency divider,” J. Opt. Soc. Am. B 14, 2481–2497 (1997). [CrossRef]
  79. R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999). [CrossRef]
  80. P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197–202 (1992). [CrossRef]
  81. W. Chen, J. Burie, and D. Boucher, “Midinfrared cw difference-frequency generation using a synchronous scanning technique for continuous tuning of the full spectral region from 4.7 to 6.5 μm,” Rev. Sci. Instrum. 67, 3411–3415 (1996). [CrossRef]
  82. D. Lee, T. Kaing, and J.-J. Zondy, “An all-diode-laser-based, dual-cavity AgGaS2 cw difference-frequency source for the 9–11 μm range,” Appl. Phys. B 67, 363–367 (1998). [CrossRef]
  83. W. Chen, G. Mouret, and D. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998). [CrossRef]
  84. J.-J. Zondy, “The effects of focusing in type I and type II difference-frequency generations,” Opt. Commun. 149, 181–206 (1998). [CrossRef]
  85. A. D. Ludlow, H. M. Nelson, and S. D. Bergeson, “Two-photon absorption in potassium niobate,” J. Opt. Soc. Am. B 18, 1813–1820 (2001). [CrossRef]
  86. L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, J.-J. Zondy, and G. H. M. Knippels, “LiInS2: a new nonlinear crystal for the mid-IR,” Mater. Sci. Semicond. Proc. 4, 665–668 (2001). [CrossRef]
  87. H. Mabuchi, E. S. Polzik, and H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3,” J. Opt. Soc. Am. B 11, 2023–2029 (1994). [CrossRef]
  88. L. Shiv, J. L. Sorensen, and E. S. Polzik, “Inhibited light-induced absorption in KNbO3,” Opt. Lett. 20, 2270–2272 (1995). [CrossRef]
  89. L. Isaenko, A. Yelisseyev, L. Lobanov, I. Vasilyeva, V. Petrov, V. Nadolinny, J. Smirnova, and J.-J. Zondy, “Effect of deviation from stoichiometry on photoinduced absorption in LiInS 2 nonlinear crystals,” presented at the 8th European Conf. on Solid State Chemistry (ECSSC-8), July 4–7, 2001, Oslo, Norway.
  90. G. C. Catella and D. Burlage, “Crystal growth and optical properties of AgGaS 2 and AgGaSe 2,” MRS Bulletin, July 1998, pp. 28–36.
  91. U. Simon, S. Waltman, I. Loa, F. K. Tittel, and L. Hollberg, “External-cavity difference-frequency source near 3.2 μm based on combining a tunable diode laser with a diode-pumped Nd:YAG laser in AgGaS2,” J. Opt. Soc. Am. B 12, 323–327 (1995). [CrossRef]
  92. M. A. Acharekar, J. L. Montgomery, and R. J. Rapp, “Laser damage threshold measurements of AgGaSe2 crystal at 9 μm,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1624, 46–54 (1992). [CrossRef]
  93. A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997). [CrossRef]
  94. B. C. Ziegler and K. L. Schepler, “Transmission and damage-threshold measurements in AgGaSe2 at 2.1 μm,” Appl. Opt. 30, 5077–5080 (1991). [CrossRef] [PubMed]
  95. Yu. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, and I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001); [transl. from Kvantovaya Elektron. (Moscow) 31, 1075–1078 (2001)]. [CrossRef]
  96. J. Mangin, G. Jeandel, and G. Marnier, “Temperature dependence of polarization in KTiOPO4 single crystals,” Phys. Status Solidi A 117, 319–323 (1990). [CrossRef]
  97. L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003). [CrossRef]
  98. S. Zelt, Fabereicht Physik, Universität Kaiserslautern, 67653 Kaiserslautern, Germany (private communication, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited