OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 12 — Dec. 1, 2004
  • pp: 2081–2084

Highly efficient generation of pulsed photon pairs with bulk periodically poled potassium titanyl phosphate

Bao-Sen Shi and Akihisa Tomita  »View Author Affiliations

JOSA B, Vol. 21, Issue 12, pp. 2081-2084 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (118 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate efficient generation of collinearly propagating, degenerate pulsed photon pairs based on a bulk periodically poled potassium titanyl phosphate pumped by an ultrashort-pulse laser. Using a single-mode fiber as a spatial mode filter, we detect approximately 3200 coincidence counts per second per milliwatt pump power in a Hanbury–Brown–Twiss-type experiment. The estimated photon-pair production rate is approximately 1.05 MHz/mW pump power. This is very promising for the realization of sources for quantum communication and metrology.

© 2004 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

Bao-Sen Shi and Akihisa Tomita, "Highly efficient generation of pulsed photon pairs with bulk periodically poled potassium titanyl phosphate," J. Opt. Soc. Am. B 21, 2081-2084 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (Long Island City, N.Y.) 1, 195–200 (1964).
  2. Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988). [CrossRef] [PubMed]
  3. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric downconversion,” Phys. Rev. Lett. 61, 2921–2924 (1988). [CrossRef] [PubMed]
  4. A. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–664 (1991). [CrossRef] [PubMed]
  5. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000). [CrossRef] [PubMed]
  6. D. S. Naik, C. Perterson, A. White, A. Berglund, and P. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000). [CrossRef] [PubMed]
  7. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000). [CrossRef] [PubMed]
  8. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1898 (1993). [CrossRef] [PubMed]
  9. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997). [CrossRef]
  10. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1124 (1998). [CrossRef]
  11. A. Furusawa, J. L. Sorense, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998). [CrossRef] [PubMed]
  12. Y. H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001). [CrossRef] [PubMed]
  13. K. Mattle, H. Weinfurter, P. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996). [CrossRef] [PubMed]
  14. D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. London, Ser. A 439, 553–558 (1992). [CrossRef]
  15. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970). [CrossRef]
  16. P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef] [PubMed]
  17. S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001). [CrossRef]
  18. K. Sanaka, K. Kawahara, and T. Kuga, “New high-efficient source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001). [CrossRef] [PubMed]
  19. G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999). [CrossRef]
  20. K. Bannaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1379 (2001). [CrossRef]
  21. S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002). [CrossRef]
  22. E. J. Mason, M. A. Albota, F. Konig, and F. N. C. Wong, “Efficient generation of tunable photon pairs at 0.8 and 1.6 μm,” Opt. Lett. 27, 2115–2117 (2002). [CrossRef]
  23. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically-poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004). [CrossRef]
  24. M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constrains,” Phys. Rev. A 69, 041801 (2004). [CrossRef]
  25. H. Kosaka, Research Institute of Electrical Communication, Tohoku University, 2–1-1 Katahira, Aoba-ku, Sendai 980–8577, Japan (personal communication, 2003).
  26. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  27. P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963). [CrossRef]
  28. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford U. Press, Oxford, UK, 2000).
  29. S. Wang, V. Pasiskevicius, F. Laurell, and K. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4,” Opt. Lett. 23, 1883–1885 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited