OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 12 — Dec. 1, 2004
  • pp: 2117–2129

Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay

Katja Rademaker, William F. Krupke, Ralph H. Page, Stephen A. Payne, Klaus Petermann, Guenter Huber, Alexander P. Yelisseyev, Ludmila I. Isaenko, Utpal N. Roy, Arnold Burger, Krishna C. Mandal, and Karel Nitsch  »View Author Affiliations


JOSA B, Vol. 21, Issue 12, pp. 2117-2129 (2004)
http://dx.doi.org/10.1364/JOSAB.21.002117


View Full Text Article

Acrobat PDF (314 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the optical properties of Nd<sup>3+</sup>- and Tb<sup>3+</sup>-doped low-phonon-energy moisture-resistant host crystals, potassium lead bromide (KPb<sub>2</sub>Br<sub>5</sub>), and rubidium lead bromide (RbPb<sub>2</sub>Br<sub>5</sub>), including absorption, emission, and emission lifetime measurements as well as calculations of the multiphonon decay rate, Judd–Ofelt parameters, and radiative transition probabilities for relevant (laser) transitions in these crystals. The RE<sup>3+</sup>:MPb<sub>2</sub>Br<sub>5</sub> (M=Rb, K) crystal is a promising candidate for long-wavelength infrared applications because of the low phonon frequencies and other favorable features.

© 2004 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(160.5690) Materials : Rare-earth-doped materials

Citation
Katja Rademaker, William F. Krupke, Ralph H. Page, Stephen A. Payne, Klaus Petermann, Guenter Huber, Alexander P. Yelisseyev, Ludmila I. Isaenko, Utpal N. Roy, Arnold Burger, Krishna C. Mandal, and Karel Nitsch, "Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay," J. Opt. Soc. Am. B 21, 2117-2129 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-12-2117


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32, 646–649 (1996).
  2. R. H. Page, K. I. Schaffers, S. A. Payne, and W. F. Krupke, “Dy-doped chlorides as gain media for 1.3 μm telecommunications amplifiers,” J. Lightwave Technol. 15, 786–793 (1997).
  3. M. C. Nostrand, R. H. Page, S. A. Payne, and W. F. Krupke, “Spectroscopic data for infrared transitions in CaGa2S4:Dy3+ and KPb2Cl5:Dy3+,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 524–528.
  4. L. I. Isaenko, A. P. Yelisseyev, V. A. Nadolinny, V. I. Pashkov, M. C. Nostrand, R. H. Page, S. A. Payne, and R. Solarz, “Spectroscopic investigation of rare earth doped chloride single crystals for telecommunication amplifiers,” in Solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 242–249 (1998).
  5. A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, W. F. Krupke, S. A. Payne, R. Solarz, M. C. Nostrand, and R. H. Page, “Dy3+-doped KPb2Cl5 crystal of double chlorides and double fluorides as the active media of IR solid state lasers and telecommunication amplifiers,” J. Opt. Technol. 66, 460–462 (1999).
  6. A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, R. Solarz, M. C. Nostrand, R. H. Page, and S. A. Payne, “Comparative spectroscopic study of the Dy3+ doped double chloride and double fluoride crystals for telecommunication amplifiers and IR lasers,” Acta Phys. Pol. A 95, 381–394 (1999).
  7. M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, P. G. Schunemann, and L. I. Isaenko, “Laser demonstrations of rare-earth ions in low-phonon chloride and sulfide crystals,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 459–463.
  8. M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, P. G. Schunemann, and L. I. Isaenko, “Room temperature CaGa2S4:Dy3+ laser action at 2.43 and 4.31 μm and KPb2Cl5:Dy3+ laser action at 2.43 μm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 441–449.
  9. S. R. Bowman, S. K. Searles, N. W. Jenkins, S. B. Qadri, E. F. Skelton, and J. Ganem, “New mid-IR laser based on an erbium activated low phonon energy crystal,” in Conference on Lasers and Electro-Optics, Vol. 56 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 557–558.
  10. R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, “Visible luminescence in KPb2Cl5:Pr3+ crystal,” J. Lumin. 97, 190–197 (2002).
  11. A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, D. I. Mironov, M. C. Nostrand, R. H. Page, and S. A. Payne, “Spectroscopic properties of TR3+-doped double chloride crystals,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 22–36 (2002).
  12. R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+-doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).
  13. N. W. Jenkins and S. R. Bowman, “Lifetime measurements for a potential neodymium 5-μm laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 280–281.
  14. N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, “Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride,” J. Lumin. 97, 127–134 (2002).
  15. A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, S. A. Payne, R. Solarz, R. H. Page, and M. C. Nostrand, “Spectroscopic study of neodymium-doped potassium-lead double chloride Nd3+:KPb2Cl5 crystals,” Opt. Spectrosc. 92, 83–94 (2002).
  16. L. N. Butvina, E. M. Dianov, A. G. Okhrimchuk, N. V. Lichkova, and V. N. Zavgorodnev, “MIR spectroscopy of Tb3+-doped low-phonon crystals and polycrystalline fibers,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 37–42 (2002).
  17. N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, “Spectroscopic characterization of Erdoped KPb2Cl5 laser crystals,” Opt. Mater. 22, 311–320 (2003).
  18. A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, M.-F. Joubert, Y. Guyot, and S. A. Payne, “Spectroscopic studies of erbium-doped potassium-lead double chloride crystals KPb2Cl5:Er3+. 1. Optical spectra and relaxation of the erbium excited states in potassium-lead double chloride crystals,” Opt. Spectrosc. 95, 722–740 (2003).
  19. M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+- and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18, 264–276 (2001).
  20. P. Y. Tigreat, J. L. Doualan, R. Moncorge, and B. Ferrand, “Spectroscopic investigation of a 1.55 μm emission band in Dy3+-doped CsCdBr3 and KPb2Cl5 single crystal,” J. Lumin. 94–95, 107–111 (2001).
  21. R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion processes in Pr3+/Yb3+-codoped potassium lead chloride crystal,” Phys. Rev. B 68, 165101–1–165101–7 (2003).
  22. A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, N. V. Lichkova, and V. N. Zavgorodnev, “Sensitization of MIR Tb3+ luminescence by Tm3+ ions in CsCdBr3 and KPb2Cl5 crystals,” in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 303–308.
  23. M. Cola, V. Massarotti, R. Riccardi, and C. Sinistri, “Binary systems formed by lead bromide with (Li, Na, K, Rb, Cs and Tl)Br: a DTA and diffractometric study,” Z. Naturforsch. Teil. A 26, 1328–1332 (1971).
  24. K. Nitsch and M. Rodova, “Differential thermal analysis study of lead bromide,” J. Cryst. Growth 134, 386–387 (1993).
  25. H. M. Powell and H. S. Tasker, “The valency angle of bivalent lead: the crystal structure of ammonium, rubidium, and potassium pentabromodiplumbites,” J. Chem. Soc. 1937119–123 ().
  26. K. Nitsch, V. Hamplová, M. Nikl, K. Polák, and M. Rodová, “Lead bromide and ternary alkali lead bromide single crystals—growth and emission properties,” Chem. Phys. Lett. 258, 518–522 (1996).
  27. K. Nitsch, M. Dušek, M. Nikl, K. Polák, and M. Rodová, “Ternary alkali lead chlorides: crystal growth, crystal structure, absorption and emission properties,” Prog. Cryst. Growth Charact. 30, 1–22 (1995).
  28. M. Nikl, K. Nitsch, I. Velicka, J. Hybler, K. Polák, and T. Fabian, “Photoluminescence of KPb2Cl5,” Phys. Status Solidi B 168, K37–K42 (1991).
  29. Q. Ren, L. Q. Liu, Z. G. Wang, X. S. An, G. H. Zhang, and D. Xu, “Refractive index and absorption of lead bromide crystals,” Mater. Res. Bull. 35, 471–476 (2000).
  30. M. J. Weber, CRC Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, London, 1986).
  31. M. C. Nostrand, “New mid-IR lasers based on rare-earth-doped sulfide and chloride materials,” Ph.D. dissertation (Lawrence Livermore National Laboratory, Livermore, Calif., 2000).
  32. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll and W. Vaughan, eds. (McGraw-Hill, New York, 1978), pp. 14.1–14.65.
  33. R. Pohlman, “Ultrarotspektren von Ammoniumsalzen im Gebiet ihrer anomalen spezifischen Waerme,” Z. Phys. 79, 394–420 (1932).
  34. O. Reinkober, “Ultrarote Absorptionsspektren fester Substanzen in duennen Schichten,” Z. Phys. 5, 192–197 (1921).
  35. R. C. Weast and M. J. Astle, eds., CRC Handbook of Chemistry and Physics, 63rd ed. (CRC Press, Boca Raton, Fla., 1982).
  36. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
  37. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
  38. M. C. Nostrand, Lawrence Livermore National Laboratory, University of California, Livermore, Calif. 94550 (personal communication, 2003).
  39. W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,” IEEE J. Quantum Electron. QE-7, 153–159 (1971).
  40. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, New York, 1996).
  41. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
  42. W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145, 325–337 (1966).
  43. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of trivalent lanthanides in LaF3” (Chemistry Division, Argonne National Laboratory, Argonne, Ill., 1977).
  44. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare earth-doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48, 1127–1136 (2001).
  45. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
  46. G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron. 24, 920–923 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited