OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 12 — Dec. 1, 2004
  • pp: 2175–2179

Interaction of noncollinear spatial solitons in a nonlinear optical medium

Ramaz Khomeriki and Lasha Tkeshelashvili  »View Author Affiliations

JOSA B, Vol. 21, Issue 12, pp. 2175-2179 (2004)

View Full Text Article

Acrobat PDF (137 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effects caused by nonresonant nonlinear interaction between noncollinear self-focusing beams are considered in two-dimensional optical samples by use of multiscale analysis. An analytical expression for beam trajectory shifts that are due to mutual interaction is derived, and the range of parameters is given, beyond which the mentioned consideration fails. We compare our results with the naive geometrical-optics model. It is shown that these two approaches give the same results. This justifies use of the geometrical-optics approach to describe elastic and almost-elastic collision processes both in Kerr and saturable nonlinear media. The results we obtained could be useful for the design of phase independent nonlinear photonic switches and all-optical logic elements.

© 2004 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(250.5530) Optoelectronics : Pulse propagation and temporal solitons

Ramaz Khomeriki and Lasha Tkeshelashvili, "Interaction of noncollinear spatial solitons in a nonlinear optical medium," J. Opt. Soc. Am. B 21, 2175-2179 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  2. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, London, 1982).
  3. V. E. Zakharov and E. A. Kuznetsov, “Hamiltonian formalism for nonlinear waves,” Phys. Usp. 40, 1087–1116 (1997).
  4. S. O. Demokritov, B. Hillebrands, and A. N. Slavin, “Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement,” Phys. Rep. 348, 441–489 (2001).
  5. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
  6. N. Giorgadze and R. Khomeriki, “Nonresonant interaction of noncollinear weakly nonlinear modulated waves of magnetization,” J. Magn. Magn. Mater. 186, 239–247 (1998).
  7. N. Giorgadze and R. Khomeriki, “Interaction of envelope solitons in yttrium iron garnet films,” Phys. Rev. B 60, 1247–1251 (1999).
  8. R. Khomeriki and L. Tkeshelashvili, “A generalized approach for the description of magnetostatic soliton interaction in yttrium-iron-garnet films,” J. Phys.: Condens. Matter 12, 8875–8882 (2000).
  9. A. W. Snyder, D. J. Mitchell, and A. V. Buryak, “Qualitative theory of bright solitons: the soliton sketch,” J. Opt. Soc. Am. B 13, 1146–1150 (1996).
  10. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).
  11. V. I. Karpman and V. V. Solov’ev, “A perturbational approach to the two-soliton systems,” Physica D 3, 487–502 (1981).
  12. K. A. Gorshkov and L. A. Ostrovsky, “Interactions of solitons in nonintegrable systems: direct perturbation method and applications,” Physica D 3, 428–438 (1981).
  13. D. Anderson and M. Lisak, “Bandwidth limits due to incoherent soliton interaction in optical-fiber communication systems,” Phys. Rev. A 32, 2270–2274 (1985).
  14. F. Reynaud and A. Barthelemy, “Optically controlled interaction between two fundamental soliton beams,” Europhys. Lett. 12, 401–405 (1990).
  15. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett. 16, 15–17 (1991).
  16. J. S. Aitchison, Y. Silberberg, A. M. Weiner, D. E. Leaird, M. K. Oliver, J. L. Jackel, E. M. Vogel, and P. W. E. Smith, “Spatial optical solitons in planar glass waveguides,” J. Opt. Soc. Am. B 8, 1290–1297 (1991).
  17. M. Shih and M. Segev, “Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett. 21, 1538–1540 (1996).
  18. V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996).
  19. H. Meng, G. Salamo, M. Shih, and M. Segev, “Coherent collisions of photorefractive solitons,” Opt. Lett. 22, 448–450 (1997).
  20. W. Krolikowski and S. A. Holmstrom, “Fusion and birth of spatial solitons upon collision,” Opt. Lett. 22, 369–371 (1997).
  21. M. Shih, M. Segev, and G. Salamo, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551–2554 (1997).
  22. A. V. Buryak, Y. S. Kivshar, M. Shih, and M. Segev, “Induced coherence and stable soliton spiraling,” Phys. Rev. Lett. 82, 81–84 (1999).
  23. T. Taniuti, “Reductive perturbation method and far fields of wave equations,” Suppl. Prog. Theor. Phys. 55, 1–35 (1975).
  24. M. Oikawa and N. Yajima, “Perturbation approach to nonlinear systems. II. Interaction of nonlinear modulated waves,” J. Phys. Soc. Jpn. 37, 486–496 (1974).
  25. T.-T. Shi and S. Chi, “Nonlinear photonic switching by using the spatial soliton collision,” Opt. Lett. 15, 1123–1125 (1990).
  26. O. V. Kolokoltsev, R. Salas, and V. Vountesmeri, “All-optical phase-independent logic elements based on phase shift induced by coherent soliton collisions,” J. Lightwave Technol. 20, 1048–1053 (2002).
  27. S. Blair, K. H. Wagner, and R. McLeod, “Material figures of merit for spatial soliton interactions in the presence of absorption,” J. Opt. Soc. Am. B 13, 2141–2153 (1996).
  28. O. Cohen, R. Uzdin, T. Carmon, J. W. Fleischer, M. Segev, and S. Odoulov, “Collisions between optical spatial solitons propagating in opposite directions,” Phys. Rev. Lett. 89, 133901 (2002).
  29. A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited