OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 12 — Dec. 1, 2004
  • pp: 2206–2212

Vector treatment of second-harmonic generation produced by tightly focused vignetted Gaussian beams

Ara A. Asatryan, Colin J. R. Sheppard, and C. Martijn de Sterke  »View Author Affiliations

JOSA B, Vol. 21, Issue 12, pp. 2206-2212 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (941 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a fast and accurate method to calculate the vector-field distribution of a focused Gaussian beam. This method is applied to calculate the second harmonic that is generated by such a beam from a sample in the undepleted pump approximation. These calculations can be used to model second-harmonic imaging in an optical microscope with a wide aperture.

© 2004 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(260.1960) Physical optics : Diffraction theory

Ara A. Asatryan, Colin J. R. Sheppard, and C. Martijn de Sterke, "Vector treatment of second-harmonic generation produced by tightly focused vignetted Gaussian beams," J. Opt. Soc. Am. B 21, 2206-2212 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Hellwarth and P. Christiansen, “Nonlinear optical microscope using second harmonic generation,” Appl. Opt. 14, 247–248 (1975). [CrossRef] [PubMed]
  2. J. N. Gannaway and C. J. R. Sheppard, “Second-harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10, 435 (1978). [CrossRef]
  3. C. J. R. Sheppard and R. Kompfner, “Resonant scanning optical microscope,” Appl. Opt. 17, 2879–2882 (1978). [CrossRef] [PubMed]
  4. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity, optical second harmonic microscopy, crossed-beam summation and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986). [CrossRef] [PubMed]
  5. Y. Guo, P. P. Ho, A. Tirksliunas, F. Liu, and R. R. Alfano, “Optical harmonic generation from animal tissues by the use of picosecond and femtosecond laser pulses,” Appl. Opt. 35, 6810–6813 (1996). [CrossRef] [PubMed]
  6. G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Struct. Biol. 141, 53–62 (2003). [CrossRef] [PubMed]
  7. L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17, 1685–1694 (2000). [CrossRef]
  8. J. Mertz and L. Moreaux, “Multi-harmonic light microscopy: theory and applications to membrane imaging,” in Multiphoton Microscopy in the Biomedical Sciences, A. M. Periasamy and P. T. C. So, eds., Proc. SPIE 4262, 9–17 (2001). [CrossRef]
  9. G. Peleg, A. Lewis, M. Linial, and L. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. U.S.A. 96, 6700–6704 (1999). [CrossRef] [PubMed]
  10. P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77, 3341–3349 (1999). [CrossRef] [PubMed]
  11. R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Optimization of second harmonic generation microscopy,” Micron 32, 691–700 (2001). [CrossRef] [PubMed]
  12. J. Vydra and M. Eich, “Mapping of the lateral polar orientation distribution in second-order nonlinear thin films by scanning second-harmonic microscopy,” Appl. Phys. Lett. 72, 275–277 (1998). [CrossRef]
  13. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]
  14. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University, Cambridge, 1997).
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, New York, 1995).
  16. V. S. Ignatovsky, “Diffraction by a parabolic mirror having arbitrary opening,” Trans. Opt. Inst. Petrograd I, paper IV (1920).
  17. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959). [CrossRef]
  18. A. Yoshida and T. Asakura, “Electromagnetic field near theFocus of a Gaussian beam,” Optik (Stuttgart) 41, 281–292 (1974).
  19. R. Kant, “An analytical solution of vector diffraction for focusing optical systems,” J. Mol. Spectrosc. 40, 337–347 (1993).
  20. C. J. R. Sheppard and P. Török, “Efficient calculation ofelectromagnetic diffraction in optical systems using a multipole expansion,” J. Mod. Opt. 44, 803–818 (1997). [CrossRef]
  21. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1998).
  22. M. Abramowitz, Handbook of Mathematical Functions (Dover, New York, 1972).
  23. R. W. Boyd, Nonlinear Optics (Academic, Boston, 1992).
  24. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, New York, 1995).
  25. P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23 (1963). [CrossRef]
  26. Ji-Xin Cheng and X. Sunney Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited