OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 12 — Dec. 1, 2004
  • pp: 2221–2226

Three-dimensional spatial imaging in multiphoton ionization rate measurements

Richard Bredy, Howard A. Camp, Hai Nguyen, Takaaki Awata, Bing Shan, Zhenghu Chang, and B. D. DePaola  »View Author Affiliations

JOSA B, Vol. 21, Issue 12, pp. 2221-2226 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (617 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An experiment is described in which an apparatus is used to demonstrate the feasibility of measuring multiphoton photoionization rates in the interaction of short pulsed lasers with atoms or molecules. With this methodology, the ionization rate is measured as a function of the spatial position in the beam-waist region of the laser through the direct three-dimensional spatial imaging of the ionization events. Thus, if the spatial dependence of the laser beam intensity were known, a series of experiments could yield the intensity dependence of multiphoton ionization without the assumptions or errors that are generally inherent in the integration over one or more dimensions in the laser focal volume.

© 2004 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(260.3230) Physical optics : Ionization
(260.5210) Physical optics : Photoionization
(270.6620) Quantum optics : Strong-field processes

Richard Bredy, Howard A. Camp, Hai Nguyen, Takaaki Awata, Bing Shan, Zhenghu Chang, and B. D. DePaola, "Three-dimensional spatial imaging in multiphoton ionization rate measurements," J. Opt. Soc. Am. B 21, 2221-2226 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. REFERENCES AND NOTESC. Guo, M. Li, J. P. Nibarger, and G. N. Gibson, “Single and double ionization of diatomic molecules in strong laser fields,” Phys. Rev. A 58, R4271–R4274 (1998). [CrossRef]
  2. X. M. Tong, Z. X. Zhao, and C. D. Lin, “Theory of molecular tunneling ionization,” Phys. Rev. A 66, 033402 (2002). [CrossRef]
  3. I. V. Litvinyuk, K. F. Lee, P. W. Dooley, D. M. Rayner, D. M. Villeneuve, and P. B. Corkum, “Alignment-dependent strong field ionization of molecules,” Phys. Rev. Lett. 90, 233003 (2003). [CrossRef] [PubMed]
  4. X. M. Tong and S. I. Chu, “Probing the spectral and temporal structures of high-order harmonic generation in intense laser pulses,” Phys. Rev. A 61, 021802 (2000). [CrossRef]
  5. C. Ellert and P. B. Corkum, “Disentangling molecular alignment and enhanced ionization in intense laser fields,” Phys. Rev. A 59, R3170–R3173 (1999). [CrossRef]
  6. E. Wells, M. J. DeWitt, and R. R. Jones, “Comparison of intense-field ionization of diatomic molecules and rare-gas atoms,” Phys. Rev. A 66, 013409 (2002). [CrossRef]
  7. R. R. Jones, “Multiphoton ionization enchancement using two phase-coherent laser pulses,” Phys. Rev. Lett. 75, 1491–1494 (1995). [CrossRef] [PubMed]
  8. A. Talebpour, C.-Y. Chien, and S. L. Chin, “Population trapping in rare gases,” J. Phys. B 29, 5725–5733 (1996). [CrossRef]
  9. P. Hansch and L. D. Woerkom, “High-precision intensity-selective observation of multiphoton ionization: a new method of photoelectron spectroscopy,” Opt. Lett. 21, 1286–1288 (1996). [CrossRef] [PubMed]
  10. P. Hansch, M. A. Walker, and L. D. Woerkom, “Spatially dependent multiphoton multiple ionization,” Phys. Rev. A 54, R2559 (1996). [CrossRef] [PubMed]
  11. C. J. Uiterwaal, Behlen Laboratory B56, University of Nebraska-Lincoln, Lincoln, Nebr. 68588 (personal communication, 2003).
  12. M. A. Walker, P. Hansch, and L. D. Woerkom, “Intensity-resolved multiphoton ionization: circumventing spatial averaging,” Phys. Rev. A 57, R701–R704 (1998). [CrossRef]
  13. S. M. Hankin, D. M. Villeneuve, P. B. Corkum, and D. M. Rayner, “Intense-field laser ionization rates in atoms and molecules,” Phys. Rev. A 64, 013405 (2001). [CrossRef]
  14. H. Nguyen, X. Fléchard, R. Brédy, H. A. Camp, and B. D. DePaola, “Target recoil ion momentum spectroscopy using magneto-optically trapped atoms,” Rev. Sci. Instrum. 70, 032704 (2004).
  15. The pulse width reported here is only approximate. For the purposes of this work, the exact pulse width is not relevant.
  16. SAES Getters USA Inc., 1222 East Cheyenne Mountain Blvd., Colorado Springs, Colo. 80906.
  17. H. C. Straub, M. A. Mangan, B. G. Lindsay, K. A. Smith, and R. F. Stebbings, “Absolute detection efficiency of a microchannel plate detector for kilo-electron volt energy ions,” Rev. Sci. Instrum. 70, 4238–4240 (1999). [CrossRef]
  18. Del Mar Ventures, 12595 Ruette Alliante 148, San Diego, Calif. 92130.
  19. O. Jagutzki, V. Mergel, K. Ullmann-Pfelger, L. Spielberger, U. Meyer, R. Dörner, and H. Schmidt-Böcking, “Fast position and time-resolved read-out of microchannelplates with the delay-line techniques for single-particle and photon detection,” in Imaging Spectrometry IV, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3438, 322–333 (1998). [CrossRef]
  20. The SIMION 3D Version 6.113 software package was developed by D. A. Dahl, MS 2208.
  21. X. Fléchard, H. Nguyen, E. Wells, I. Ben-Itzhak, and B. D. DePaola, “Kinematically complete charge exchange experiment in the Cs++Rb collision system using a MOT target,” Phys. Rev. Lett. 87, 123203 (2001). [CrossRef]
  22. X. Fléchard, H. Nguyen, R. Brédy, S. R. Lundeen, M. Stauffer, H. A. Camp, C. W. Fehrenbach, and B. D. DePaola, “State selective charge transfer cross sections for Na+ with excited rubidium: A unique diagnostic of the population dynamics of a magneto-optical trap,” Phys. Rev. Lett. 91, 243005 (2003). [CrossRef]
  23. M. van der Poel, C. V. Nielsen, M.-A. Gearba, and N. Andersen, “Fraunhofer diffraction of atomic matter waves: electron transfer studies with a laser cooled target,” Phys. Rev. Lett. 87, 123201 (2001). [CrossRef] [PubMed]
  24. J. W. Turkstra, R. Hoekstra, D. Meyer, R. Morgenstern, and R. E. Olson, “Recoil momentum spectroscopy of highly charged ion collisions on magneto-optically trapped Na,” Phys. Rev. Lett. 87, 123202 (2001). [CrossRef] [PubMed]
  25. H. Nguyen, “Magneto optical trap recoil ion momentum spectroscopy,” Ph.D. dissertation (Kansas State University, Manhattan, Kansas, 2003).
  26. V. Mergel, Diploma Thesis, Johann-Wolfgang-Goethe Universität Frankfurt (unpublished 1994).
  27. V. Mergel, R. Dörner, J. Ullrich, O. Jagutzki, S. Lencinas, S. Nüttgens, L. Spielberger, M. Unverzagt, C. L. Cocke, R. E. Olson, M. Schulz, U. Buck, E. Zanger, W. Theisinger, M. Isser, S. Geis, and H. Schmidt-Böcking, “State selective scattering angle dependent capture cross sections measured by cold target recoil ion momentum spectroscopy,” Phys. Rev. Lett. 74, 2200–2203 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited