OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 2 — Feb. 1, 2004
  • pp: 243–248

Polarization-mode dispersion of a circulating loop

T. I. Lakoba, C. Dorrer, and D. N. Maywar  »View Author Affiliations


JOSA B, Vol. 21, Issue 2, pp. 243-248 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000243


View Full Text Article

Acrobat PDF (180 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive an analytic expression for the evolution of the differential group delay (DGD) in a fiber-optic circulating loop. We distill a simple analytic solution for the <i>average</i> DGD and show that it accumulates approximately linearly with transmission distance. The scaling of this linear function is confirmed experimentally using a long-haul fiber-optic transmission test-bed. This result is contrasted with DGD accumulation in a long straight-line transmission system, where the average DGD accumulates as a square root of the system’s length.

© 2004 Optical Society of America

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

Citation
T. I. Lakoba, C. Dorrer, and D. N. Maywar, "Polarization-mode dispersion of a circulating loop," J. Opt. Soc. Am. B 21, 243-248 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-2-243


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22, 1029–1030 (1986).
  2. A. Caltarossa, A. Pizzinat, and F. Matera, “Statistical description of optical system performances due to random coupling on the principal states of polarization,” IEEE Photon. Technol. Lett. 13, 1307–1309 (2001).
  3. M. Karlsson and J. Brentel, “Autocorrelation function of the polarization-mode dispersion vector,” Opt. Lett. 24, 939–941 (1999).
  4. M. Shtaif and A. Mecozzi, “Mean-square magnitude of all orders of polarization mode dispersion and the relation with the bandwidth of the principal states,” IEEE Photon. Technol. Lett. 12, 53–55 (2000).
  5. J. Garnier, J. Fatome, and G. Le Meur, “Statistical analysis of pulse propagation driven by polarization-mode dispersion,” J. Opt. Soc. Am. B 19, 1968–1977 (2002).
  6. Q. Lin and G. P. Agrawal, “Correlation theory of polarization mode dispersion in optical fibers,” J. Opt. Soc. Am. B 20, 292–301 (2003).
  7. S. Lee, Q. Yu, L.-S. Yan, Y. Xie, O. H. Adamczyk, and A. E. Willner, “A short recirculating fiber loop testbed with accurate reproduction of Maxwellian PMD statistics,” Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper WT-2.
  8. H. Xu, J. Wen, J. Zweck, L. Yan, C. Menyuk, G. Carter, “The effects of distributed PMD, PDL, and loop scrambling on BER distributions in a recirculating loop used to emulate long-haul terrestrial transmission,” Optical Fiber Communication Conference, Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuO2.
  9. H. Kogelnik, R. Jopson, and L. Nelson, “Polarization-mode dispersion,” Optical Fiber Telecommunications IV-B, I. Kaminow and T. Li, eds. (Academic, New York, 2002), pp. 725–861.
  10. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. 97, 4541–4550 (2000).
  11. Y. Tan, J. Yang, W. L. Kath, and C. R. Menyuk, “Transient evolution of the polarization dispersion vector’s probability distribution,” J. Opt. Soc. Am. B 19, 992–1000 (2002).
  12. S. V. Chernikov and J. R. Taylor, “Measurement of normalization factor of n2 for random polarization in optical fibers,” Opt. Lett. 21, 1559–1561 (1996).
  13. A. Vannucci and A. Bononi, “Statistical characterization of the Jones matrix of long fibers affected by polarization mode dispersion (PMD),” J. Lightwave Technol. 20, 811–821 (2002).
  14. B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066–1069 (1992).
  15. C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
  16. D. N. Maywar, D. F. Grosz, A. Kung, L. Altman, M. Movassaghi, A. Agarwal, S. Banerjee, and T. H. Wood, “Ultra-wideband transmission of 1.28 Tbit/s (128×10.7 Gbit/s) over 2000 km using 50% RZ data,” Electron. Lett. 38, 1573–1575 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited