OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 2 — Feb. 1, 2004
  • pp: 266–272

Phase statistics of the soliton

Keang-Po Ho  »View Author Affiliations


JOSA B, Vol. 21, Issue 2, pp. 266-272 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000266


View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The characteristic function of soliton phase jitter is found analytically when the soliton is perturbed by amplifier noise. In addition to that from amplitude jitter, the nonlinear phase noise due to frequency and timing jitter is also analyzed. With nonlinear phase noise, the overall phase jitter is non-Gaussian distributed. For a fixed mean nonlinear phase shift, the contribution of nonlinear phase noise from frequency and timing jitter decreases with distance and signal-to-noise ratio.

© 2004 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5060) Fiber optics and optical communications : Phase modulation
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Citation
Keang-Po Ho, "Phase statistics of the soliton," J. Opt. Soc. Am. B 21, 266-272 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-2-266


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 865–867 (1986). [CrossRef]
  2. K. Blow, N. Doran, and S. Phoenix, “The soliton phase,” Opt. Commun. 88, 137–140 (1992). [CrossRef]
  3. M. Hanna, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes, “Experimental investigation of soliton optical phase jitter,” IEEE J. Quantum Electron. 36, 1333–1338 (2000). [CrossRef]
  4. M. Hanna, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes, “Performance assessment of DPSK soliton transmission system,” Electron. Lett. 37, 644–646 (2001). [CrossRef]
  5. E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (Wiley, New York, 1998), Chap. 5.
  6. M. Hanna, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes, “Soliton optical phase control by use of in-line filters,” Opt. Lett. 24, 732–734 (1999). [CrossRef]
  7. O. Leclerc and E. Desurvire, “Effect of synchronous modulation on the soliton optical phase,” Opt. Lett. 23, 1453–1455 (1998). [CrossRef]
  8. C. J. McKinstrie and C. Xie, “Phase jitter in single-channel soliton systems with constant dispersion,” IEEE J. Sel. Top. Quantum Electron. 8, 616–625 (2002); erratum 8, 956 (2002). [CrossRef]
  9. H. Kim and A. H. Gnauck, “Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,” IEEE Photon. Technol. Lett. 15, 320–322 (2003). [CrossRef]
  10. A. Mecozzi, “Limits to long-haul coherent transmission set by the Kerr nonlinearity and noise of the in-line amplifiers,” J. Lightwave Technol. 12, 1993–2000 (1994). [CrossRef]
  11. K.-P. Ho, “Asymptotic probability density of nonlinear phase noise,” Opt. Lett. 28, 1350–1352 (2003). [CrossRef] [PubMed]
  12. K.-P. Ho, “Probability density of nonlinear phase noise,” J. Opt. Soc. Am. B 20, 1875–1879 (2003). [CrossRef]
  13. K.-P. Ho, “Statistical properties of nonlinear phase noise,” in Advances in Optics and Laser Research, W. T. Arkin, ed. (Nova Science, Hauppauge, N.Y., 2003), Vol. 3.
  14. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15, 1351–1353 (1990). [CrossRef] [PubMed]
  15. Y. S. Kivshar and B. A. Malomed, “Dynamics of solitons in nearly integrable systems,” Rev. Mod. Phys. 61, 763–915 (1989). [CrossRef]
  16. D. J. Kaup, “Perturbation theory for solitons in optical fibers,” Phys. Rev. A 42, 5689–5694 (1990). [CrossRef] [PubMed]
  17. T. Georges, “Perturbation theory for the assessment of soliton transmission control,” Opt. Laser Technol. 1, 97–116 (1995).
  18. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agrawal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maymar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D. M. Gill, “2.5 Tb/s (64× 42.7 Gb/s) transmission over 40×100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2002), postdeadline paper FC2.
  19. Y. Miyamoto, H. Masuda, A. Hirano, S. Kuwahara, Y. Kisaka, H. Kawakami, M. Tomizawa, Y. Tada, and S. Aozasa, “S-band WDM coherent transmission of 40× 43-Gbit/s CS-RZ DPSK signals over 400 km DSF using hybrid GS-TDFAs/Raman amplifiers,” Electron. Lett. 38, 1569–1570 (2002). [CrossRef]
  20. H. Bissessur, G. Charlet, E. Gohin, C. Simonneau, L. Pierre, and W. Idler, “1.6 Tbit/s (40×40 Gbit/s) DPSK transmission over 3×100 km of TeraLight fibre with direct detection,” Electron. Lett. 39, 192–193 (2003). [CrossRef]
  21. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, and E. Burrows, “25 40-Gb/s copolarized DPSK transmission over 12 100-km NZDF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett. 15, 467–469 (2003). [CrossRef]
  22. P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, “Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber,” IEEE Photon. Technol. Lett. 15, 473–475 (2003). [CrossRef]
  23. C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van de Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, “DWDM 40G transmission over trans-Pacific distance (10, 000 km) using CSRZ-DPSK, enhanced FEC and all-Raman amplified 100 km Ultra-Wave™ fiber spans,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2003), postdeadline paper PD18.
  24. B. Zhu, L. E. Nelson, S. Stulz, A. H. Gnauck, C. Doerr, J. Leuthold, L. Grüner-Nielsen, M. O. Pederson, J. Kim, R. Lingle, Y. Emori, Y. Ohki, N. Tsukiji, A. Oguri, and S. Namiki, “6.4-Tb/s (160×42.7 Gb/s) transmission with 0.8 bit/s/Hz spectral efficiency over 32×100 km of fiber using CSRZ-DPSK format,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2003), postdeadline paper PD19.
  25. G. Vareille, L. Becouarn, P. Pecci, P. Tran, and J. F. Marcerou, “8370 km with 22 dB spans ULH transmission of 185*10.709 Gbit/s RZ-DPSK channels,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2003), postdeadline paper PD20.
  26. T. Tsuritani, K. Ishida, A. Agata, K. Shimomura, I. Morita, T. Tokura, H. Taga, T. Mizuochi, and N. Edagawa, “70 GHz-spaced 40×42.7 Gbit/s transmission over 8700 km using CS-RZ DPSK signal, all-Raman repeaters and symmetrically dispersion-managed fiber span,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2003), postdeadline paper PD23.
  27. J.-X. Cai, D. G. Foursa, C. R. Davidson, Y. Cai, G. Domagala, H. Li, L. Liu, W. W. Patterson, A. N. Pilipetskii, M. Nissov, and N. S. Bergano, “A DWDM demonstration of 3.73 Tb/s over 11, 000 km using 373 RZ-DPSK channels at 10 Gb/s,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2003), postdeadline paper PD22.
  28. P. Shum, H. Ghafouri-Shiraz, and S. F. Yu, “Analysis of a DPSK soliton transmission system,” Opt. Laser Technol. 29, 411–414 (1997). [CrossRef]
  29. P. Shum and H. Ghafouri-Shiraz, “Analysis of bit error rate in an optical soliton communication system,” Opt. Laser Technol. 28, 535–547 (1996). [CrossRef]
  30. P. A. Humblet and M. Azizog̃lu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 9, 1576–1582 (1991). [CrossRef]
  31. G. Nicholson, “Probability of error for optical heterodyne DPSK system with quantum phase noise,” Electron. Lett. 20, 1005–1007 (1984). [CrossRef]
  32. R. Holzlohner, V. S. Grigoryan, C. R. Menyuk, and W. L. Kath, “Accurate calculation of eye diagrams and bit error rates in optical transmission systems using linearization,” J. Lightwave Technol. 20, 389–400 (2002). [CrossRef]
  33. D. J. Kaup, “Second-order perturbation for solitons in optical fibers,” Phys. Rev. A 44, 4582–4590 (1991). [CrossRef] [PubMed]
  34. H. A. Haus, W. S. Wong, and F. I. Khatri, “Continuum generation by perturbation of soliton,” J. Opt. Soc. Am. B 14, 304–313 (1997). [CrossRef]
  35. K.-P. Ho, “Non-Gaussian statistics of the soliton timing jitter due to amplifier noise,” Opt. Lett. 28, 2165–2167 (2003). [CrossRef] [PubMed]
  36. R. O. Moore, G. Biondini, and W. L. Kath, “Importance sampling for noise-induced amplitude and timing jitter in soliton transmission systems,” Opt. Lett. 28, 105–107 (2003). [CrossRef] [PubMed]
  37. E. M. Stein and J. C. Stein, “Stock price distribution with stochastic volatility: an analytical approach,” Rev. Financ. Stud. 4, 727–752 (1991). [CrossRef]
  38. R. H. Cameron and W. T. Martin, “Evaluation of various Wiener integrals by use of certain Sturm-Liouville differential equations,” Bull. Am. Math. Soc. 51, 73–90 (1945). [CrossRef]
  39. A. Mecozzi, “Long-distance transmission at zero dispersion: combined effect of Kerr nonlinearity and the noise of the in-line amplifiers,” J. Opt. Soc. Am. B 11, 462–469 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited