OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 2 — Feb. 1, 2004
  • pp: 289–295

Optimization of a two-dimensional photonic-crystal waveguide branch by simulated annealing and the finite-element method

Woo Jun Kim and John D. O’Brien  »View Author Affiliations

JOSA B, Vol. 21, Issue 2, pp. 289-295 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The finite-element method including simulated annealing algorithm is adopted for the analysis and optimization of photonic-crystal waveguiding structures. The dispersion relations of the photonic-crystal waveguides are found by solution of an eigenvalue equation. The waveguide structures including bends and branches are analyzed by use of a scattering formulation. The symmetry of the structure is exploited to classify the modes as well as to reduce the computations. Based on the transmission spectra of a waveguide’s bends and branches, a branch is optimized by use of the simulated annealing algorithm.

© 2004 Optical Society of America

OCIS Codes
(130.1750) Integrated optics : Components
(230.3120) Optical devices : Integrated optics devices

Woo Jun Kim and John D. O'Brien, "Optimization of a two-dimensional photonic-crystal waveguide branch by simulated annealing and the finite-element method," J. Opt. Soc. Am. B 21, 289-295 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic crystal defect laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]
  4. T. Baba, N. Fukaya, and Y. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–655 (1999). [CrossRef]
  5. M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991). [CrossRef]
  6. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000). [CrossRef]
  7. H. Y. D. Yang, “Finite difference analysis of 2-D photonic crystals,” IEEE Trans. Microwave Theory Tech. 44, 2688–2695 (1996). [CrossRef]
  8. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000). [CrossRef]
  9. G. Tayeb and D. Maystre, “Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities,” J. Opt. Soc. Am. A 14, 3323–3332 (1997). [CrossRef]
  10. W. Zhang, C. T. Chan, and P. Sheng, “Multiple scattering theory and its application to photonic band gap systems consisting of coated spheres,” Opt. Express 8, 203–208 (2001), http://www.opticsexpress.org. [CrossRef] [PubMed]
  11. P. Lalanne, “Effective medium theory applied to photonic crystals composed of cubic or square cylinders,” Appl. Opt. 35, 5369–5380 (1996). [CrossRef] [PubMed]
  12. E. Popov and B. Bozhkov, “Differential method applied for photonic crystals,” Appl. Opt. 39, 4926–4932 (2000). [CrossRef]
  13. C. Mias, J. P. Webb, and R. I. Ferrari, “Finite element eigenvalue analysis of periodic structures,” in IEE Colloquium on Semiconductor Optical Microcavity Devices and Photonic Bandgaps, digest 1996/267 (Institute of Electrical Engineers, London, 1996).
  14. J.-K. Hwang, S.-B. Hyun, H. Y. Ryu, and Y.-H. Lee, “Resonant modes of two-dimensional photonic bandgap cavities determined by the finite-element method and by use of the anisotropic perfectly matched layer boundary condition,” J. Opt. Soc. Am. B 15, 2316–2324 (1998). [CrossRef]
  15. W. Axmann and P. Kuchment, “An efficient finite element method for computing spectra of photonic and acoustic band-gap materials,” J. Comput. Phys. 150, 468–481 (1999). [CrossRef]
  16. M. Koshiba, Y. Tsuji, and M. Hikari, “Time-domain beam propagation method and its application to photonic crystal circuits,” IEEE J. Quantum Electron. 18, 102–110 (2000).
  17. G. Pelosi, A. Cocchi, and A. Monorchio, “A hybrid FEM-based procedure for the scattering from photonic crystals illuminated by a Gaussian beam,” IEEE Trans. Antennas Propag. 48, 973–980 (2000). [CrossRef]
  18. D. C. Dobson, J. Gopalakrishnan, and J. E. Pasciak, “An efficient method for band structure calculations in 3D photonic crystals,” J. Comput. Phys. 161, 668–679 (2000). [CrossRef]
  19. K. Sakoda, “Optical transmittance of a two-dimensional triangular photonic lattice,” Phys. Rev. B 51, 4672–4675 (1995). [CrossRef]
  20. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998). [CrossRef]
  21. D. Hermann, M. Frank, K. Busch, and P. Wölfle, “Photonic band structure computations,” Opt. Express 8, 167–190 (2001), http://www.opticsexpress.org. [CrossRef] [PubMed]
  22. M. A. Haider, S. P. Shipman, and S. Venakides, “Boundary-integral calculations of two-dimensional electromagnetic scattering in infinite photonic crystal slabs: channel defects and resonances,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 62, 2129–2148 (2002). [CrossRef]
  23. S. P. Peet and R. L. Ferrari, Finite Elements for Electrical Engineers, 3rd ed. (Cambridge U. Press, Cambridge, 1996), Chap. 8.
  24. http://www.netlib.org/linalg/spooles/spooles.2.2.html.
  25. http://www.ime.unicamp.br/chico/arpack++/.
  26. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  27. Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995). [CrossRef]
  28. S. Boscolo, C. Conti, M. Midrio, and C. G. Someda, “Numerical analysis of propagation and impedance matching in 2D photonic crystal waveguides with finite length,” J. Lightwave Technol. 20, 304–310 (2002). [CrossRef]
  29. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162–165 (2001). [CrossRef]
  30. S. Boscolo, M. Midrio, and T. F. Krauss, “Y junctions in photonic crystal channel waveguides: high transmission and impedance matching,” Opt. Lett. 27, 1001–1003 (2002). [CrossRef]
  31. A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002). [CrossRef]
  32. A. Sharkawy, S. Shi, and D. W. Prather, “Heterostructure photonic crystals: theory and applications,” Appl. Opt. 41, 7245–7253 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited