OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 2 — Feb. 1, 2004
  • pp: 296–301

Optical Bloch-mode-induced quasi phase matching of quadratic interactions in one-dimensional photonic crystals

Daniele Faccio, Francesca Bragheri, and Matteo Cherchi  »View Author Affiliations

JOSA B, Vol. 21, Issue 2, pp. 296-301 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (551 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine in detail the quasi-phase-matching process obtained as a stationary modulation of the fundamental field at the band edge of a finite one-dimensional photonic crystal. The treatment is carried out in terms of the structure Bloch waves and fully explains the behavior of second-harmonic generation in the grating. An integrated microstructured AlGaAs mesa waveguide is proposed that gives efficient second-harmonic and difference-frequency generation in virtue of the combined presence of a periodic modulation of the fundamental-field amplitude and of the photonic bandgap edge.

© 2004 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(190.0190) Nonlinear optics : Nonlinear optics

Daniele Faccio, Francesca Bragheri, and Matteo Cherchi, "Optical Bloch-mode-induced quasi phase matching of quadratic interactions in one-dimensional photonic crystals," J. Opt. Soc. Am. B 21, 296-301 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Giordmaine, “Mixing of light beams in crystals,” Phys. Rev. Lett. 8, 19–20 (1962). [CrossRef]
  2. P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21 (1962). [CrossRef]
  3. S. Somekh and A. Yariv, “Phase matching by periodic modulation of the nonlinear optical properties,” Opt. Commun. 6, 301–304 (1972). [CrossRef]
  4. C. Conti, G. Assanto, and S. Trillo, “Energy localization through Bragg gratings in quadratic media for second harmonic generation,” Acta Phys. Pol. 95, 719–726 (1999).
  5. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998). [CrossRef]
  6. A. Yariv and P. Yeh, “Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers,” J. Opt. Soc. Am. 67, 438–448 (1977). [CrossRef]
  7. F. Ranieri, Y. Dumeige, A. Levenson, and X. Letartre, “Nonlinear decoupled FDTD code: phase-matching in 2D defective photonic crystal,” Electron. Lett. 38, 1704–1706 (2002). [CrossRef]
  8. N. Bloembergen and A. J. Sievers, “Nonlinear properties of laminar structures,” Appl. Phys. Lett. 17, 483–486 (1970). [CrossRef]
  9. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 278, 2631–2654 (1992). [CrossRef]
  10. C. L. Tang and P. P. Bey, “Phase matching in second harmonic generation using artificial periodic structures,” IEEE J. Quantum Electron. 9, 9–17 (1973). [CrossRef]
  11. A. V. Balakin, V. A. Bushuev, B. I. Mantsyzov, I. A. Ozheredov, E. V. Petrov, and A. P. Shkurinov, “Enhancement of sum frequency generation near the photonic band gap edge under the quasiphase matching conditions,” Phys. Rev. E 63, 046609 (2001). [CrossRef]
  12. A. V. Balakin, V. A. Bushuev, N. I. Koroteev, B. I. Mantsyzov, I. A. Ozheredov, A. P. Shkurinov, D. Boucher, and P. Masselin, “Enhancement of second harmonic generation with femtosecond laser pulses near the photonic band edge for different polarizations of incident light,” Opt. Lett. 24, 793–795 (1999). [CrossRef]
  13. Y. Dumeige, P. Vidakovic, S. Savauge, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021–3023 (2001). [CrossRef]
  14. C. Conti, G. Assanto, and S. Trillo, “Cavityless oscillation through backward quasiphase-matched second-harmonic generation,” Opt. Lett. 24, 1139–1141 (1999). [CrossRef]
  15. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second harmonic generation on nolinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997). [CrossRef]
  16. J. W. Haus, R. Viswanathan, M. Scalora, A. G. Kalocsai, J. D. Cole, and J. Theimer, “Enhanced second-harmonic generation in media with weak periodicity,” Phys. Rev. A 57, 2120–2128 (1998). [CrossRef]
  17. M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999). [CrossRef]
  18. Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, C. Meriadec, and A. Levenson, “χ(2) semiconductor photonic crystals,” J. Opt. Soc. Am. B 9, 2094–2101 (2002). [CrossRef]
  19. M. Midrio, L. Socci, and M. Romagnoli, “Frequency conversion in one-dimensional stratified media with quadratic nonlinearity,” J. Opt. Soc. Am. B 19, 83–88 (2002). [CrossRef]
  20. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984).
  21. P. St. J. Russell, T. A. Birks, and F. D. Lloyd-Lucas, “Photonic Bloch waves and photonic band gaps,” in Confined Electrons and Photons, E. Burstein and C. Weisbuch (Plenum, New York, 1995), pp. 585–633.
  22. Fimmwave, PhotonDesign Ltd, UK.
  23. D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: analysis using optical transfer matrix techniques,” J. Opt. Soc. Am. B 6, 910–916 (1989). [CrossRef]
  24. Y. Jeong and B. Lee, “Matrix analysis for layered quasi-phase-matched media considering multiple reflection and pump wave depletion,” IEEE J. Quantum Electron. 35, 162–172 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited