OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 2 — Feb. 1, 2004
  • pp: 307–312

Transient spectral hole burning in erbium-doped fluoride glasses

Laurent Bigot, Samuel Choblet, Anne-Marie Jurdyc, Bernard Jacquier, and Jean-Luc Adam  »View Author Affiliations

JOSA B, Vol. 21, Issue 2, pp. 307-312 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report what is, to the best of our knowledge, the first observation of transient spectral hole burning in erbium-doped fluorozirconate glass around 1.53 µm. Holes deeper than 12% were burnt. A study of the hole width as a function of power density, wavelength, temperature, and erbium concentration has been performed and underlines the role of spectral diffusion. Dynamics of refilling of the holes, involving optical pumping of the long-lived  4I13/2 excited state, was also investigated. The nearly linear temperature dependence of the hole width behaves as reported for other rare-earth ions and is interpreted within the framework of the two-level systems theory. Hole-refilling dynamics has been studied for three different erbium concentrations and is used to interpret the origin of the saturation.

© 2004 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.5690) Materials : Rare-earth-doped materials
(300.3700) Spectroscopy : Linewidth
(300.6460) Spectroscopy : Spectroscopy, saturation

Laurent Bigot, Samuel Choblet, Anne-Marie Jurdyc, Bernard Jacquier, and Jean-Luc Adam, "Transient spectral hole burning in erbium-doped fluoride glasses," J. Opt. Soc. Am. B 21, 307-312 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. MacFarlane and R. M. Shelby, “Homogeneous line broadening of optical transitions of ions and molecules in glasses,” J. Lumin. 36, 179–207 (1987). [CrossRef]
  2. E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley Interscience, New York, 2002).
  3. R. M. MacFarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral holeburning,” Opt. Commun. 45, 46–51 (1983). [CrossRef]
  4. T. Schmidt, R. M. Macfarlane, and S. Volker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707–15718 (1994). [CrossRef]
  5. M. Nogami and T. Hayakawa, “Persistent spectral hole burning of sol-gel-derived Eu3+-doped SiO2 glass,” Phys. Rev. B 56, R14235–R14238 (1997). [CrossRef]
  6. K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glasses,” Opt. Lett. 23, 543–545 (1998). [CrossRef]
  7. P. J. Van der Zaag, B. C. Schokker, T. Schmidt, R. M. Macfarlane, and S. Volker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80–82 (1990). [CrossRef]
  8. R. M. MacFarlane and B. Jacquier, “Spectral holeburning of Nd3+ doped heavy metal fluoride glasses,” J. Non-Cryst. Solids 161, 254–256 (1993). [CrossRef]
  9. W. S. Brocklesby, B. Golding, and J. R. Simpson, “Absorption fluctuations and persistent spectral hole burning in a Nd3+-doped glass waveguide,” Phys. Rev. Lett. 63, 1833–1836 (1989). [CrossRef] [PubMed]
  10. B. Jacquier, R. M. MacFarlane, and A. M. Jurdyc, “Spectral hole-burning of Nd3+ doped germanosilicate fiber,” J. Phys. III 5, 219–224 (1995).
  11. Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677–3679 (1996). [CrossRef]
  12. M. Nogami, T. Nagakura, and T. Hayakawa, “Site-dependent fluorescence and hole-burning spectra of Eu3+-doped Al2O3—SiO2 glasses,” J. Lumin. 86, 117–123 (2000). [CrossRef]
  13. M. Nogami, “Persistent spectral hole burning of Sm2+ and Eu3+ ions in sol-gel derived glasses,” J. Non-Cryst. Solids 259, 170–175 (1999). [CrossRef]
  14. K. Fujita, K. Nouchi, and K. Hirao, “Local structure and persistent hole burning of Sm2+ in silica-based fibers,” J. Lumin. 86, 305–310 (2000). [CrossRef]
  15. D. Ricard, W. Beck, A. Y. Karasik, M. A. Borik, J. Arvanitidis, T. Fotteler, and C. Flytzanis, “Room-temperature persistent hole burning in Eu3+-doped inorganic glasses: the mechanisms,” J. Lumin. 86, 317–322 (2000). [CrossRef]
  16. K. Hirao, S. Todoroki, and N. Soga, “Room-temperature persistent hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217–219 (1993). [CrossRef]
  17. A. Pearson and W. S. Brocklesby, “Hole burning studies of Pr3+-doped fluoride and chalcogenide glasses,” J. Lumin. 60–61, 208–211 (1994). [CrossRef]
  18. R. J. Wannemacher, M. A. Koedijk, and S. Volker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437–440 (1994). [CrossRef]
  19. J. L. Zyskind, E. Desurvire, J. W. Sulhoff, and D. J. Di Giovanni, “Determination of homogeneous line width by spectral hole burning in an erbium-doped fiber with GeO2:SiO2 core,” IEEE Photon. Technol. Lett. 2, 869–871 (1990). [CrossRef]
  20. E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain hole burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2, 246–248 (1990). [CrossRef]
  21. S. Zemon, G. Lambert, W. J. Miniscalco, and B. A. Thompson, “Homogeneous line widths in Er3+-doped glasses measured by resonance fluorescence line narrowing,” in Proceedings of Fiber Laser Sources and Amplifiers III, M. J. Digonnet and E. Snitzer, eds., Proc. SPIE 1581, 91–100 (1992). [CrossRef]
  22. L. Bigot, A-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B 66, 214204 (2002). [CrossRef]
  23. L. Bigot, A.-M. Jurdyc, B. Jacquier, and J.-L. Adam, “Inhomogeneous and homogeneous linewidths in Er3+-doped chalcogenide glasses,” Opt. Mater. 24, 97–102 (2003). [CrossRef]
  24. A. Szabo, “Observation of hole burning and cross relaxation effects in ruby,” Phys. Rev. B 11, 4512–4517 (1975). [CrossRef]
  25. P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1–9 (1972). [CrossRef]
  26. T. Schmidt, J. Baak, D. A. van de Straat, H. B. Brom, and S. Volker, “Temperature dependence of optical linewidths and specific heat of rare-earth-doped silicate glasses,” Phys. Rev. Lett. 71, 3031–3034 (1994). [CrossRef]
  27. V. L. Da Silva, Y. Silberberg, J. P. Heritage, E. W. Chase, M. A. Saifi, M. J. Andrejco, and A. Yi-Yan, “Photon-echoes in Er-doped fibers,” presented at the Quantum Electronics and Lasers Science Conference, Anaheim, Calif. May, 10–15, 1992.
  28. S. Guy, L. Bigot, I. Vasilief, B. Jacquier, B. Boulard, and Y. Gao, “Two crystallographic sites in erbium-doped fluoride glass by frequency-resolved and site-selective spectroscopies,” J. Non-Cryst. Solids.
  29. P. B. Sellin, N. M. Strickland, T. Bottger, J. L. Carlsten, and R. L. Cone, “Laser stabilization at 1536 nm using regenerative hole burning,” Phys. Rev. B 63, 155111 (2001). [CrossRef]
  30. J. C. Lasjaunias and M. A. Grosdemouge, “Low-temperature specific heat of two fluorozirconate glasses,” J. Non-Cryst. Solids 54, 183–186 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited