OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 2 — Feb. 1, 2004
  • pp: 330–342

Pseudospectral time-domain methods for modeling optical wave propagation in second-order nonlinear materials

Tae-Woo Lee and Susan C. Hagness  »View Author Affiliations

JOSA B, Vol. 21, Issue 2, pp. 330-342 (2004)

View Full Text Article

Acrobat PDF (297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Frequency conversion in second-order nonlinear materials is sensitive to the phase velocities of interacting optical waves. Accurate modeling of such problems with the finite-difference time-domain method requires extremely fine grid resolutions to minimize numerical dispersion errors. We propose an alternative approach based on a pseudospectral time-domain (PSTD) method for solving the nonlinear Maxwell’s equations. Low-dispersion PSTD schemes with second- and fourth-order time stepping are developed and investigated. Benchmark simulations of second-harmonic generation (SHG) demonstrate that the PSTD schemes offer significant improvements in computational efficiency and accuracy. We demonstrate use of these schemes by modeling SHG in a nonlinear grating illuminated at an oblique angle, where phase matching is achieved in two dimensions.

© 2004 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing

Tae-Woo Lee and Susan C. Hagness, "Pseudospectral time-domain methods for modeling optical wave propagation in second-order nonlinear materials," J. Opt. Soc. Am. B 21, 330-342 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
  2. Y. Baek, R. Schiek, G. I. Stegeman, G. Krijnen, I. Baumann, and W. Sohler, “All-optical integrated Mach-Zehnder switching due to cascaded nonlinearities,” Appl. Phys. Lett. 68, 2055–2057 (1996).
  3. G. Y. Wang, J. Zhao, Q. Chen, and M. Cronin-Golomb, “Widely tunable efficient intracavity quasiphase-matched midinfrared generation,” Appl. Phys. Lett. 70, 2218–2220 (1997).
  4. G. W. Ross, M. Pollnau, P. G. R. Smith, W. A. Clarkson, P. E. Britton, and D. C. Hanna, “Generation of high-power blue light in periodically poled LiNbO3,” Opt. Lett. 23, 171–173 (1998).
  5. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918 (1962).
  6. B. Hermansson, D. Yevick, and L. Thylen, “A propagating beam method analysis of nonlinear effects in optical waveguides,” Opt. Quantum Electron. 16, 525–534 (1984).
  7. K. Hayata and M. Koshiba, “Numerical study of guided-wave sum-frequency generation through second-order nonlinear parametric processes,” J. Opt. Soc. Am. B 8, 449–458 (1991).
  8. P. S. Weitzman and U. Osterberg, “A modified beam propagation method to model second harmonic generation in optical fibers,” IEEE J. Quantum Electron. 29, 1437–1443 (1993).
  9. H. M. Masoudi and J. M. Arnold, “Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method,” IEEE J. Quantum Electron. 31, 2107–2113 (1995).
  10. H. F. Chou, C. F. Lin, and S. Mou, “Comparisons of finite difference beam propagation methods for modeling second-order nonlinear effects,” J. Lightwave Technol. 17, 1481–1486 (1999).
  11. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 2000).
  12. A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
  13. B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am. B 15, 1155–1159 (1998).
  14. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
  15. R. W. Ziolkowski and M. Tanaka, “FDTD analysis of PBG waveguides, power splitters and switches,” Opt. Quantum Electron. 31, 843–855 (1999).
  16. S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
  17. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filiters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
  18. R. X. Bian, R. C. Dunn, and X. S. Xie, “Single molecule emission characteristics in near-field microscopy,” Phys. Lett. A 75, 4772–4775 (1995).
  19. G. Liu, J. F. Seurin, S. L. Chuang, D. I. Babic, S. W. Corzine, M. Tan, D. C. Barness, and T. N. Tiouririne, “Mode selectivity study of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73, 726–728 (1998).
  20. T. W. Lee, S. C. Hagness, D. L. Zhou, and L. J. Mawst, “Modal characteristics of ARROW-type vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 13, 770–772 (2001).
  21. D. W. Prather and S. Y. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A 16, 1131–1142 (1999).
  22. P. M. Goorjian, A. Taflove, R. M. Joseph, and S. C. Hagness, “Computational modeling of femtosecond optical solitons from Maxwell’s equations,” IEEE J. Quantum Electron. 28, 2416–2422 (1992).
  23. R. W. Ziolkowski and J. B. Judkins, “Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time,” J. Opt. Soc. Am. B 10, 186–198 (1993).
  24. D. M. Sullivan, “Nonlinear FDTD formulation using Z transforms,” IEEE Trans. Microwave Theory Tech. 43, 676–682 (1995).
  25. A. Bourgeade and E. Freysz, “Computational modeling of second-harmonic generation by solution of full-wave vector Maxwell equations,” J. Opt. Soc. Am. B 17, 226–234 (2000).
  26. R. M. Joseph and A. Taflove, “FDTD Maxwell’s equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antennas Propag. 45, 364–374 (1997).
  27. Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microwave Opt. Technol. Lett. 15, 158–165 (1997).
  28. B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge U. Press, Cambridge, UK, 1996).
  29. Q. H. Liu, “Large-scale simulations of electromagnetic and acoustic measurements using the pseudo-spectral time-domain (PSTD) algorithm,” IEEE Trans. Geosci. Remote Sens. 37, 917–926 (1999).
  30. T. W. Lee and S. C. Hagness, “A compact wave source condition for the pseudospectral time-domain method,” IEEE Wireless Propag. Lett. (to be published).
  31. J. Fang, “Time-domain finite-difference computations for Maxwell’s equations,” Ph.D. dissertation (Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, Calif., 1989).
  32. R. W. Ziolkowski, “The incorporation of microscopic mate-rial models into the FDTD approach for ultrashort opticalpulse simulation,” IEEE Trans. Antennas Propag. 45, 375–391 (1997).
  33. Q. H. Liu and N. Nguyen, “An accurate algorithm for nonuniform fast Fourier transform (NUFFT),” IEEE Microwave Guid. Wave Lett. 8, 18–20 (1998).
  34. W. K. Leung, Y. Chen, and R. Mittra, “Transformed-space non-uniform pseudo-spectral time-domain (NU-PSTD) algorithm without use of non-uniform FFT,” in IEEE AP-S International Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), pp. 498–501.
  35. S. T. Yang and S. P. Velsko, “Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 24, 133–135 (1999).
  36. R. M. Joseph, S. C. Hagness, and A. Taflove, “Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses,” Opt. Lett. 16, 1412–1414 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited