OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 2 — Feb. 1, 2004
  • pp: 384–396

Upconverted lasing based on many-photon absorption: an all dynamic description

A. Baev, F. Gel'mukhanov, O. Rubio-Pons, P. Cronstrand, and H. Ågren  »View Author Affiliations


JOSA B, Vol. 21, Issue 2, pp. 384-396 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000384


View Full Text Article

Acrobat PDF (734 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theory is developed for the propagation through a nonlinear medium of strong pump and amplified-spontaneous-emission pulses. The theory is based on a solution of the density matrix equations that aims at providing an adequate treatment of the nonlinear polarization of the material without addressing the Taylor expansion over the powers of intensity. The theory has been applied for modeling of three-photon absorption induced upconverted stimulated emission of organic molecules in solvents. Numerical results are presented for the organic chromophore 4-[N-(2-hydroxyethyl)-N-(methyl)amino phenyl]-4-(6-hydroxyhexyl sulfonyl) stilbene dissolved in dimethyl sulfoxide. The results are in good agreement with available experimental results.

© 2004 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(160.4890) Materials : Organic materials
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

Citation
A. Baev, F. Gel'mukhanov, O. Rubio-Pons, P. Cronstrand, and H. Ågren, "Upconverted lasing based on many-photon absorption: an all dynamic description," J. Opt. Soc. Am. B 21, 384-396 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-2-384


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. S. He, J. Swiatkiewicz, Y. Jiang, P. N. Prasad, B. A. Reinhardt, L.-S. Tan, and R. Kannan, “Two-photon excitation and optical spatial-profile reshaping via a nonlinear absorbing medium,” J. Phys. Chem. A 104, 4805–4810 (2000).
  2. D. A. Parthenopoulos and P. M. Rentzepis, “3-dimensional optical storage memory,” Science 245, 843–845 (1989).
  3. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
  4. “Two-photon excitation in laser scanning fluorescence microscopy,” in CAN-AM Eastern ’90, R. L. Antos and A. J. Krisiloff, eds., Proc. SPIE 1398, 107–117 (1991).
  5. J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Laser Med. Surg. 15, 201–204 (1997).
  6. G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
  7. Y. Luo, P. Macak, P. Norman, C. K. Wang, and H. Ågren, “Ab initio calculations of structure-to-property relations for two-photon absorption of organic molecules,” Nonlinear Opt. 27, 33–46 (2001).
  8. A. C. Newell and J. V. Moloney, Nonlinear Optics (Addison-Wesley, Reading, Mass., 1992).
  9. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, New York, 1995).
  10. F. Gel’mukhanov, A. Baev, P. Macak, Y. Luo, and H. Ågren, “Dynamics of two-photon absorption by molecules and solutions,” J. Opt. Soc. Am. B 19, 937–945 (2002).
  11. A. Baev, F. Gel’mukhanov, P. Macak, Y. Luo, and H. Ågren, “General theory for pulse propagation in two-photon active media,” J. Chem. Phys. 117, 6214–6220 (2002).
  12. N. Mitkova Dushkina and B. Ullrich, “Intensity dependence of two-photon absorption in CdS measured by photoluminescence excited by femtosecond laser pulses,” Opt. Eng. 41, 2365–2368 (2002).
  13. B. Dick and G. Hohlneicher, “Importance of initial and final states as intermediate states in 2-photon spectroscopy of polar molecules,” J. Chem. Phys. 76, 5755–5760 (1982).
  14. B. N. Jagatap and W. J. Meath, “Contributions of permanent dipole moments to molecular multiphoton excitation cross sections,” J. Opt. Soc. Am. B 19, 2673–2681 (2002).
  15. A. Baev, F. Gel’mukhanov, V. Kimberg, and H. Ågren, “Nonlinear propagation of strong multi-mode fields,” J. Phys. B 36, 3761–3774 (2003).
  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, Jr., J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, C. M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.9 (Gaussian, Pittsburgh Pa., 1998).
  17. P. Macak, Y. Luo, and H. Ågren, “Simulations of vibronic profiles in two-photon absorption,” Chem. Phys. Lett. 330, 447–456 (2000).
  18. T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen, K. Ruud, H. Ågren, T. Andersen, K. L. Bak, V. Bakken, O. Christiansen, P. Dahle, E. K. Dalskov, T. Enevoldsen, H. Heiberg, H. Hettema, D. Jonsson, S. Kirpekar, R. Kobayashi, H. Koch, K. V. Mikkelsen, P. Norman, M. J. Packer, T. Saue, P. R. Taylor, and O. Vahtras, Dalton, an ab initio electronic structure program (release 1.0, 1997), http://www.kjemi.uio.no/software/dalton/dalton.html.
  19. F. Emmerling, M. Lettenberger, and A. Laubereau, “Vibrational dynamics of anthracene in liquid solution studied by picosecond IR/UV spectroscopy with polarization resolution,” J. Phys. Chem. 100, 19, 251–19, 256 (1996).
  20. P. Norman, D. Jonsson, O. Vahtras, and H. Ågren, “Non-linear electric and magnetic properties obtained from cubic response functions in the random phase approximation,” J. Chem. Phys. 203, 23–42 (1996).
  21. M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
  22. P. C. Becker, H. L. Fragnito, J.-Y. Bigot, C. H. Brito Cruz, R. L. Fork, and C. V. Shank, “Femtosecond photon-echoes from molecules in solution,” Phys. Rev. Lett. 63, 505–507 (1989).
  23. J.-Y. Bigot, M. T. Portella, R. W. Schoenlein, C. J. Bardeen, A. Migus, and C. V. Shank, “Non-Markovian dephasing of molecules in solution measured with 3-pulses femtosecond photon echoes,” Phys. Rev. Lett. 66, 1138–1141 (1991).
  24. M. K. Lawless and R. A. Mathies, “Excited state structure and electronic dephasing time of Nile Blue from absolute resonance Raman intensities,” J. Chem. Phys. 96, 8037–8045 (1992).
  25. A. Kummrow, A. Lau, and K. Lenz, “Time-resolved study of ultrafast dephasing processes in solution,” Phys. Rev. A 55, 2310–2320 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited