## Polychromatic partially spatially incoherent solitons in a noninstantaneous Kerr nonlinear medium

JOSA B, Vol. 21, Issue 2, pp. 397-404 (2004)

http://dx.doi.org/10.1364/JOSAB.21.000397

Acrobat PDF (182 KB)

### Abstract

We analytically and numerically find families of polychromatic partially spatially incoherent solitons in a noninstantaneous Kerr nonlinear medium and analyze their coherence properties. We find that the polychromatic incoherent solitons exist when higher temporal frequency constituents of the light are less spatially coherent than smaller temporal frequency constituents.

© 2004 Optical Society of America

**OCIS Codes**

(030.6600) Coherence and statistical optics : Statistical optics

(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

**Citation**

Hrvoje Buljan, Tal Schwartz, Mordechai Segev, Marin Soljačić, and Demetrios N. Christodoulides, "Polychromatic partially spatially incoherent solitons in a noninstantaneous Kerr nonlinear medium," J. Opt. Soc. Am. B **21**, 397-404 (2004)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-2-397

Sort: Year | Journal | Reset

### References

- M. Mitchell, Z. Chen, M. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett. 77, 490–493 (1996).
- M. Mitchell and M. Segev, “Self-trapping of incoherent white light,” Nature (London) 387, 880–882 (1997).
- M. Segev and D. N. Christodoulides, “Incoherent solitons,” in Spatial Solitons, S. Trillo and W. Torruellas, eds. (Springer, Berlin, 2001), pp. 87–125.
- D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M. Segev, “Theory of incoherent self-focusing in biased photorefractive media,” Phys. Rev. Lett. 78, 646–649 (1997).
- M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Theory of self-trapped spatially incoherent light beams,” Phys. Rev. Lett. 79, 4990–4993 (1997).
- V. V. Shkunov and D. Anderson, “Radiation transfer model of self-trapping spatially incoherent radiation by nonlinear media,” Phys. Rev. Lett. 81, 2683–2686 (1998).
- D. N. Christodoulides, E. D. Eugenieva, T. H. Coskun, M. Segev, and M. Mitchell, “Equivalence of three approaches describing incoherent wave propagation in inertial nonlinear media,” Phys. Rev. E 63, 035601 (2001).
- A. W. Snyder and D. J. Mitchell, “Big incoherent solitons,” Phys. Rev. Lett. 80, 1422–1425 (1998).
- B. Hall, M. Lisak, D. Anderson, R. Fedele, and V. E. Semenov, “Statistical theory for incoherent light propagation in nonlinear media,” Phys. Rev. E 65, 035602 (2002).
- D. N. Christodoulides, T. H. Coskun, M. Mitchell, Z. Chen, and M. Segev, “Theory of incoherent dark solitons,” Phys. Rev. Lett. 80, 5113–5116 (1998).
- V. Kutuzov, V. M. Petnikova, V. V. Shuvalov, and V. A. Vysloukh, “Cross-modulation coupling of incoherent soliton modes in photorefractive crystals,” Phys. Rev. E 57, 6056–6065 (1998).
- N. Akhmediev, W. Krolikowski, and A. W. Snyder, “Partially coherent solitons of variable shape,” Phys. Rev. Lett. 81, 4632–4635 (1998).
- A. Ankiewicz, W. Krolikowski, and N. N. Akhmediev, “Partially coherent solitons of variable shape in a slow Kerr-like medium: exact solutions,” Phys. Rev. E 59, 6079–6087 (1999).
- M. I. Carvalho, T. H. Coskun, D. N. Christodoulides, M. Mitchell, and M. Segev, “Coherence properties of multimode incoherent spatial solitons in noninstantaneous Kerr media,” Phys. Rev. E 59, 1193–1199 (1999).
- A. A. Sukhorukov and N. N. Akhmediev, “Coherent and incoherent contributions to multisoliton complexes,” Phys. Rev. Lett. 83, 4736–4739 (1999).
- T. H. Coskun, D. N. Christodoulides, Y.-R. Kim, Z. Chen, M. Soljacic, and M. Segev, “Bright spatial solitons on a partially incoherent background,” Phys. Rev. Lett. 84, 2374–2377 (2000).
- D. N. Christodoulides, T. H. Coskun, and R. I. Joseph, “Incoherent spatial solitons in saturable nonlinear media,” Opt. Lett. 22, 1080–1082 (1997).
- D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M. Segev, “Multimode incoherent spatial solitons in logarithmically saturable nonlinear media,” Phys. Rev. Lett. 80, 2310–2313 (1998).
- W. Krolikowski, D. Edmundson, and O. Bang, “Unified model for partially coherent solitons in logarithmically nonlinear media,” Phys. Rev. E 61, 3122–3125 (2000).
- T. H. Coskun, D. N. Christodoulides, M. Mitchell, Z. Chen, and M. Segev, “Dynamics of incoherent bright and dark self-trapped beams and their coherence properties in photorefractive crystals,” Opt. Lett. 23, 418–420 (1998).
- S. A. Ponomarenko, “Linear superposition principle for partially coherent solitons,” Phys. Rev. E 65, 055601 (2002).
- H. Buljan, M. Segev, M. Soljačić, N. K. Efremidis, and D. N. Christodoulides, “White-light solitons,” Opt. Lett. 28, 1239–1241 (2003).
- H. Buljan, A. Šiber, M. Soljačić, T. Schwartz, M. Segev, and D. N. Christodoulides, “Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear medium,” Phys. Rev. E 68, 036607 (2003).
- L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995).
- H. Buljan, A. Šiber, M. Soljačić, and M. Segev, “Propagation of incoherent white light and modulation instability in noninstantaneous nonlinear media,” Phys. Rev. E 66, 035601 (2002).
- O. Bang, D. Edmundson, and W. Królikowski, “Collapse of incoherent light beams in inertial bulk Kerr media,” Phys. Rev. Lett. 83, 5479–5482 (1999).
- Such a representation of mutual spectral density as a superposition of coherent modes, that are mutually incoherent, is inherited from the linear theory for propagation of incoherent light (see Ref. 24, p. 214.)
- S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Zh. Eksp. Teor. Fiz. 65, 505–516 (1973).
- Z. G. Cher, M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Self-trapping of dark incoherent light beams,” Science 280, 889–892 (1998).
- T. H. Coskun, D. N. Christodoulides, Z. G. Chen, and M. Segev, “Dark incoherent soliton splitting and ‘phase-memory’ effects: theory and experiment,” Phys. Rev. E 59, R4777–R4780 (1999).
- M. V. Berry, “Coloured phase singularities,” New J. Phys. 4, 66.1–66.14 (2002).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.