OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 2 — Feb. 1, 2004
  • pp: 413–418

Resonant electromagnetism in photonic crystals composed of triangular-arrayed rods with both dielectric constant and magnetic permeability functions

S. Y. Yang, Chin-Yih Hong, I. Drikis, H. E. Horng, and H. C. Yang  »View Author Affiliations


JOSA B, Vol. 21, Issue 2, pp. 413-418 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000413


View Full Text Article

Enhanced HTML    Acrobat PDF (563 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The modified frequency-domain method was used to simulate the photonic properties of triangular-arrayed rods surrounded by air and possessing nonunity dielectric and magnetic permeability functions. It was found that the photonic bandgap becomes broader for the TE mode when material with higher magnetic permeability and lower dielectric constant is used for rods as compared with that of purely dielectric rods with the same refractive index, whereas the gap is reduced for the TM mode. We further examined the photonic characteristics of the photonic-crystal cavity formed when a point defect is introduced into the rod array. With a fixed refractive index of the rods, the resonant frequency of the TE mode in the first band gap is lower and the electromagnetic energy concentration at the point defect is higher when material with higher magnetic permeability and lower dielectric constant is used for the rods. The opposite was found for the TM mode.

© 2004 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.2090) Optical devices : Electro-optical devices
(230.3810) Optical devices : Magneto-optic systems
(230.4320) Optical devices : Nonlinear optical devices

Citation
S. Y. Yang, Chin-Yih Hong, I. Drikis, H. E. Horng, and H. C. Yang, "Resonant electromagnetism in photonic crystals composed of triangular-arrayed rods with both dielectric constant and magnetic permeability functions," J. Opt. Soc. Am. B 21, 413-418 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-2-413


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University, Princeton, N.J., 1995).
  2. M. Loncar, T. Doll, J. Vuckovic, and A. Schere, “Design and fabrication of silicon photonic-crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000). [CrossRef]
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission sharp bends in photonic-crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  4. J. Sabarinathan, P. Bhattachayry, P.-C. Yu, S. Krishna, J. Cheng, and D. G. Steel, “An electrically injected, InAs/GaAs, quantum-dot, photonic-crystal-microcavity, light-emitting diode,” Appl. Phys. Lett. 81, 3876–3878 (2002). [CrossRef]
  5. J. C. Knight, J. Broeng, T. A. Briks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476 (1998). [CrossRef] [PubMed]
  6. S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, and R. Zentel, “Photonic bandgap effects upon the light emission from a dye–polymer–opal composite,” Appl. Phys. Lett. 75, 1057–1059 (1999). [CrossRef]
  7. C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, “Polymer photonic-crystal slab waveguides,” Appl. Phys. Lett. 78, 2434–2436 (2001). [CrossRef]
  8. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  9. Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic bandgap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002). [CrossRef]
  10. A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210 (2003). [CrossRef]
  11. C.-Y. Hong, I. Drikis, S. Y. Yang, H. E. Horng, and H. C. Yang, “Slab-thickness-dependent bandgap size of two-dimensional photonic crystals with triangular-arrayed dielectric or magnetic rods,” J. Appl. Phys. 94, 2188–2191 (2003). [CrossRef]
  12. S. Y. Yang, H. C. Yang, H. E. Horng, B. J. Huang, C.-Y. Hong, W. S. Tse, C. H. Hsieh, and C. N. Chang, “Tunable ordered structures for the potential photonic-crystal waveguides by using magnetic fluid films,” in Proceedings of 7th Opto Electronics and Communications Conference (2002).
  13. S. Y. Yang, H. E. Horng, C.-Y. Hong, H. C. Yang, M. C. Chou, C. T. Pan, and Y. H. Chao, “Control method for the tunable ordered structures in magnetic fluid microstrips,” J. Appl. Phys. 93, 3457–3460 (2003). [CrossRef]
  14. M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Effect of the magnetic permeability on photonic band gaps,” Phys. Rev. B 56, 959–962 (1997). [CrossRef]
  15. M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83, 6768–6770 (1998). [CrossRef]
  16. I. Drikis, S. Y. Yang, H. E. Horng, C.-Y. Hong, and H. C. Yang, “Modified frequency-domain method for simulating the electromagnetics in periodic magnetoactive systems,” J. Appl. Phys. (to be published).
  17. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization (Academic, London, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited