OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 2 — Feb. 1, 2004
  • pp: 425–428

Absorption resonance and large negative delay in rubidium vapor with a buffer gas

Eugeniy E. Mikhailov, Vladimir A. Sautenkov, Yuri V. Rostovtsev, and George R. Welch  »View Author Affiliations

JOSA B, Vol. 21, Issue 2, pp. 425-428 (2004)

View Full Text Article

Acrobat PDF (138 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We observe a narrow, isolated, two-photon absorption resonance in 87Rb for large one-photon detuning in the presence of a buffer gas. In the absence of a buffer gas, a standard Λ configuration of two laser frequencies gives rise to electromagnetically induced transparency (EIT) for all values of one-photon detuning throughout the inhomogeneously (Doppler) broadened line. However, when a buffer gas is added and the one-photon detuning is comparable to or greater than the Doppler width, an absorption resonance appears instead of the usual EIT resonance. We also observe a large negative group delay (≈−300 μs for a Gaussian pulse that propagates through the media with respect to a reference pulse not affected by the media), corresponding to a superluminal group velocity vg=−c/(3.6×106)=−84 m/s.

© 2004 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(270.5530) Quantum optics : Pulse propagation and temporal solitons

Eugeniy E. Mikhailov, Vladimir A. Sautenkov, Yuri V. Rostovtsev, and George R. Welch, "Absorption resonance and large negative delay in rubidium vapor with a buffer gas," J. Opt. Soc. Am. B 21, 425-428 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–597 (1999).
  2. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
  3. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
  4. A. Godone, F. Levi, and S. Micalizio, “Slow light and superluminality in the coherent population trapping maser,” Phys. Rev. A 66, 043804 (2002).
  5. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
  6. A. M. Akulshin, A. Cimmino, A. I. Sidorov, P. Hannaford, and G. I. Opat, “Light propagation in an atomic medium with steep and sign-reversible dispersion,” Phys. Rev. A 67, 011801 (2003).
  7. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
  8. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
  9. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
  10. A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
  11. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (July 1997).
  12. A. M. Akulshin, S. Barreiro, and A. Lexama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
  13. A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802 (2002).
  14. C. Y. Ye, Y. V. Rostovtsev, A. S. Zibrov, and Y. M. Golubev, “Quantum interference in atomic vapor controlled by a magnetic field,” Opt. Commun. 207, 227–231 (2002).
  15. D. Budker, V. Yashchuk, and M. Zolotorev, “Nonlinear magneto-optic effects with ultranarrow widths,” Phys. Rev. Lett. 81, 5788–5791 (1998).
  16. S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56, R1063–R1066 (1997).
  17. M. Erhard and H. Helm, “Buffer-gas effects on dark resonances: theory and experiment,” Phys. Rev. A 63, 043813 (2001).
  18. S. Knappe, M. Stähler, C. Affolderbach, A. V. Taichenachev, V. I. Yudin, and R. Wynands, “Simple parameterization of dark-resonance line shapes,” Appl. Phys. B 76, 57–63 (2003).
  19. A. V. Taichenachev, V. I. Yudin, R. Wynands, M. Stähler, J. Kitching, and L. Hollberg, “Theory of dark resonances for alkali-metal vapors in a buffer-gas cell,” Phys. Rev. A 67, 033810 (2003).
  20. Y. Dancheva, G. Alzetta, S. Cartaleva, M. Taslakov, and C. Andreeva, “Coherent effects on the Zeeman sublevels of hyperfine states in optical pumping of Rb by monomode diode lasers,” Opt. Commun. 178, 103–110 (2000).
  21. M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
  22. V. A. Sautenkov, M. M. Kash, V. L. Velichansky, and G. R. Welch, “Density narrowing in electromagnetically induced transparency,” Laser Phys. 9, 889–893 (1999).
  23. A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
  24. J. Vanier and C. Audoin, Quantum Physics of Atomic Frequency Standards (Hilger, London, 1989), Vol. 1.
  25. W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited