OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 3 — Mar. 1, 2004
  • pp: 486–498

Periodic compensation of polarization mode dispersion

M. Chertkov, I. Gabitov, I. Kolokolov, and T. Schäfer  »View Author Affiliations

JOSA B, Vol. 21, Issue 3, pp. 486-498 (2004)

View Full Text Article

Acrobat PDF (262 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polarization mode dispersion is the effect of signal broadening in a fiber with birefringent disorder. The disorder, frozen into the fiber, is characterized by the so-called vector of birefringence (VB). In a linear medium a pulse broadens as the two principal states of polarization split. It is well-known that, under the action of short-correlated disorder, naturally present in fibers, the dispersion vector (DV), characterizing the split, performs a Brownian random walk. We discuss a strategy of passive (i.e., pulse-independent) control of the DV broadening. The suggestion is to pin (compensate) periodically or quasi-periodically the integral of VB to zero. As a result of the influence of pinning, the probability distribution function of the DV becomes statistically steady in the linear case. Moreover, pinning improves confinement of the pulse in the weakly nonlinear case. The theoretical findings are confirmed by numerical analysis.

© 2004 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.0190) Nonlinear optics : Nonlinear optics

M. Chertkov, I. Gabitov, I. Kolokolov, and T. Schäfer, "Periodic compensation of polarization mode dispersion," J. Opt. Soc. Am. B 21, 486-498 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. D. Poole, “Statistical treatment of polarization dispersion in single-mode fiber,” Opt. Lett. 13, 687–689 (1988).
  2. C. D. Poole, “Measurement of polarization-mode dispersion in single-mode fibers with random mode coupling,” Opt. Lett. 14, 523–525 (1989).
  3. C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).
  4. C. D. Poole, J. H. Winters, and J. A. Nagel, “Dynamical equation for polarization dispersion,” Opt. Lett. 16, 372–374 (1991).
  5. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97, 4541–4550 (2000).
  6. S. C. Rashleigh and R. Ulrich, “Polarization mode dispersion in single-mode fibers,” Opt. Lett. 3, 60–62 (1978).
  7. N. S. Bergano, C. D. Poole, and R. E. Wagner, “Investigation of polarization dispersion in long lengths of single-mode fiber using multilongitudinal mode lasers,” J. Lightwave Technol. LT-5, 1618–1622 (1987).
  8. N. Gisin, B. Gisin, J. P. Von der Weid, and R. Passy, “How accurately can one measure a statistical quantity like polarization-mode dispersion,” IEEE Photon. Technol. Lett. 8, 1671–1673 (1996).
  9. L. E. Nelson, R. M. Jopson, H. Kogelnik, and J. P. Gordon, “Measurement of polarization mode dispersion vectors using the polarization-dependent signal delay method,” Opt. Express 6, 158–167 (2000).
  10. S. Machida, I. Sakai, and T. Kimura, “Polarization conservation in single-mode fibres,” Electron. Lett. 17, 494–495 (1981).
  11. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibres,” Electron. Lett. 22, 1029–1030 (1986).
  12. G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fiber,” J. Lightwave Technol. 9, 1439–1456 (1991).
  13. F. C. Curti, B. Daino, G. de Marchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1165 (1990).
  14. D. Andresciani, F. Curti, F. Matera, and B. Daino, “Measurements of the group velocity difference between the principal states of polarization on a low-birefringence terrestrial fiber cable,” Opt. Lett. 12, 844–846 (1987).
  15. N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142, 119–125 (1997).
  16. L. Chen, J. Cameron, and X. Bao, “Statistics of polarization mode dispersion in presence of the polarization dependent loss in single mode fibers,” Opt. Commun. 169, 69–73 (1999).
  17. Y. Li and A. Yariv, “Solutions to the dynamical equation of polarization-mode dispersion and polarization-dependent losses,” J. Opt. Soc. Am. B 17, 1821–1827 (2000).
  18. M. Midrio, “Nonlinear principal states of polarization in optical fibers with randomly varying birefringence,” J. Opt. Soc. Am. B 17, 169–177 (2000).
  19. I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. QE-17, 15–22 (1981).
  20. W. Eickhoff, Y. Yen, and R. Ulrich, “Wavelength dependence of birefringence in single-mode fiber,” Appl. Opt. 20, 3428–3435 (1981).
  21. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18, 2241–2251 (1979).
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  23. A. Carena, V. Curri, R. Gausino, P. Poggiolini, and S. Benedetto, “A time-domain optical transmission system simulation package accounting for nonlinear and polarization-related effects in fiber,” IEEE J. Sel. Areas Commun. 15, 751–765 (1997).
  24. A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486–490 (1970).
  25. M. Chertkov, I. Gabitov, and J. Moeser, “Pulse confinement in optical fibers with random dispersion,” Proc. Natl. Acad. Sci. U.S.A. 98, 14208–14211 (2001).
  26. M. Chertkov, I. Gabitov, P. Lushnikov, J. Moeser, and Z. Toroczkai, “Pinning method of pulse confinement in optical fiber with random dispersion,” J. Opt. Soc. Am. B 19, 2538–2550 (2002).
  27. L. F. Mollenauer, K. Smith, J. P. Gordon, and C. R. Menyuk, “Resistance of solitons to the effects of polarization dispersion in optical fibers,” Opt. Lett. 14, 1219–1221 (1989).
  28. P. K. A. Wai, C. R. Menyuk, and H. H. Chen, “Stability of solitons in randomly varying birefringent fibers,” Opt. Lett. 16, 1231–1233 (1991).
  29. P. K. Wai, W. L. Kath, C. R. Menyuk, and J. W. Zhang, “Nonlinear polarization-mode dispersion in optical fibers with randomly varying birefringence,” J. Opt. Soc. Am. B 14, 2967–2979 (1997).
  30. M. Chertkov, I. Gabitov, I. Kolokolov, V. Lebedev, and K. Turitsyn, “Solitons, birefringence and disorder,” in preparation.
  31. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
  32. R. Ulrich, “Representation of codirectional coupled waves,” Opt. Lett. 1, 109–111 (1977).
  33. N. Gisin and J. P. Pellaux, “Polarization mode dispersion: time versus frequency domains,” Opt. Commun. 89, 316–323 (1992).
  34. M. Karlsson and J. Brentel, “Autocorrelation function of the polarization-mode dispersion vector,” Opt. Lett. 24, 939–941 (1999).
  35. M. Chertkov, I. Gabitov, I. Kolokolov, and V. Lebedev, “Shedding and interaction of solitons in an imperfect medium,” JETP Lett. 74, 357–361 (2001).
  36. M. Chertkov, I. Gabitov, I. Kolokolov, and V. Lebedev, “Solitons in a disordered anisotropic optical medium,” JETP Lett. 74, 535–538 (2001).
  37. M. Chertkov, Y. Chung, A. Dyachenko, I. Gabitov, I. Kolokolov, and V. Lebedev, “Shedding and interaction of solitons in weakly disordered optical fibers,” Phys. Rev. E 67, 036615 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited