OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 3 — Mar. 1, 2004
  • pp: 522–530

Mode dispersion and photonic storage in planar defects within Bragg stacks of photonic crystal slabs

Kim Hakim Dridi  »View Author Affiliations


JOSA B, Vol. 21, Issue 3, pp. 522-530 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000522


View Full Text Article

Enhanced HTML    Acrobat PDF (852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown that electromagnetic energy can be localized to defect regions bounded by parallel planar walls perpendicular to the stack surface in Bragg stacks of two-dimensional photonic crystals. These regions produce larger bandgaps than single-photonic-crystal slabs. Group velocity and dispersion relations can easily be tailored by choice of the proper geometry and materials. Results indicate that such photonic crystals might facilitate photonic trapping and storage together with advanced photonic manipulations.

© 2004 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(130.0130) Integrated optics : Integrated optics
(230.0230) Optical devices : Optical devices

Citation
Kim Hakim Dridi, "Mode dispersion and photonic storage in planar defects within Bragg stacks of photonic crystal slabs," J. Opt. Soc. Am. B 21, 522-530 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-3-522


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  4. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998). [CrossRef] [PubMed]
  5. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength,” Opt. Lett. 25, 1297–1299 (2000). [CrossRef]
  6. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ=1.55 μm wavelengths,” Opt. Lett. 26, 286–288 (2001). [CrossRef]
  7. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett. 26, 1903–1905 (2001). [CrossRef]
  8. M. R. Watts, S. G. Johnson, H. A. Haus, and J. D. Joannopoulos, “Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap,” Opt. Lett. 27, 1785–1787 (2002). [CrossRef]
  9. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002). [CrossRef]
  10. C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett. 81, 2352–2354 (2002). [CrossRef]
  11. M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003). [CrossRef]
  12. C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003). [CrossRef] [PubMed]
  13. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001). [CrossRef]
  14. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000). [CrossRef] [PubMed]
  15. A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003). [CrossRef] [PubMed]
  16. S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77, 3490–3492 (2000). [CrossRef]
  17. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999). [CrossRef]
  18. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000). [CrossRef]
  19. Z. Jakšić, O. Jakšić, Z. Djurić, P. Krstajić, Ž. Lazić, D. Tanasković, and M. Popović, “Simple quasi-3D photonic crystal planar optical waveguides,” in Proceedings of the Fifth International Conference on Telecommunications in Modern Satellite Cable and Broadcasting Service (TELSIKS 2001)(Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), Vol. 2, pp. 389–392.
  20. K. H. Dridi, “Intrinsic eigenstate spectrum of planar multilayer stacks of two-dimensional photonic crystals,” Opt. Express 11, 1156–1165 (2003), http://www.optics express.org/abstract.cfm?URI=OPEX-11–10–1156. [CrossRef] [PubMed]
  21. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8–3-173. [CrossRef] [PubMed]
  22. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotycally single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001), http://www.opticsexpress.org/abstract. cfm?URI=OPEX-9–13–748. [CrossRef] [PubMed]
  23. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002). [CrossRef] [PubMed]
  24. T. Søndergaard and K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688 (2000). [CrossRef]
  25. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001). [CrossRef] [PubMed]
  26. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001). [CrossRef] [PubMed]
  27. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000). [CrossRef] [PubMed]
  28. M. Fleischhauer and M. D. Lukin, “Electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited