OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 3 — Mar. 1, 2004
  • pp: 548–553

Defect modes caused by twinning in one-dimensional photonic crystals

Hynek Němec, Lionel Duvillaret, François Quemeneur, and Petr Kužel  »View Author Affiliations


JOSA B, Vol. 21, Issue 3, pp. 548-553 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000548


View Full Text Article

Acrobat PDF (463 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Propagation of electromagnetic waves in a one-dimensional photonic crystal with a twin-defect—a periodicity break where one half of the photonic structure is a mirror image of the other one—is studied using a transfer-matrix method. This work is done in the general framework of photonic structures composed of isotropic materials exhibiting both dielectric and magnetic properties. Both polarizations of electromagnetic waves impinging at oblique incidence on the structure are considered. We derive analytical expressions for the frequency of defect modes and for the enhancement of the electromagnetic field inside the defect. In particular, we discuss possibilities of tuning of defect levels for a photonic crystal structure with a two-layer elementary cell.

© 2004 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(230.1480) Optical devices : Bragg reflectors

Citation
Hynek Němec, Lionel Duvillaret, François Quemeneur, and Petr Kužel, "Defect modes caused by twinning in one-dimensional photonic crystals," J. Opt. Soc. Am. B 21, 548-553 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-3-548


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  2. A. Chelnokov, S. Rowson, J. M. Lourtioz, L. Duvillaret, and J. L. Coutaz, “Terahertz characterisation of mechanically machined 3D photonic crystal,” Electron. Lett. 33, 1981–1983 (1997).
  3. H. Míguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocaña, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
  4. A. de Lustrac, F. Gadot, S. Cabaret, J.-M. Lourtioz, T. Brillat, A. Priou, and E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Appl. Phys. Lett. 75, 1625–1627 1999).
  5. A. Chelnokov, S. Rowson, J. M. Lourtioz, L. Duvillaret, and J. L. Coutaz, “Light controllable defect modes in three-dimensional photonic crystal,” Electron. Lett. 34, 1965–1967 (1998).
  6. H.-Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93, 819–830 (2003).
  7. M. Okano, A. Chutinan, and S. Noda, “Analysis and design of single-defect cavities in a three-dimensional photonic crystal,” Phys. Rev. B 66, 165211 (2002).
  8. K. Sakoda and H. Shiroma, “Numerical method for localized defect modes in photonic lattices,” Phys. Rev. B 56, 4830–4835 (1997).
  9. D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, “Photonic band structure and defects in one and two dimensions,” J. Opt. Soc. Am. B 10, 314–321 (1993).
  10. H. Miyazaki, Y. Jimba, C. Y. Kim, and T. Watanabe, “Defects and photonic wells in one-dimensional photonic lattices,” J. Phys. Soc. Jpn. 65, 3842–3852 (1996).
  11. Y. C. Tsai, K. W. K. Shung, and S. C. Gou, “Impurity modes in one-dimensional photonic crystals—analytic approach,” J. Mod. Opt. 45, 2147–2157 (1998).
  12. A. Figotin and V. Gorentsveig, “Localized electromagnetic waves in a layered periodic dielectric medium with a defect,” Phys. Rev. B 58, 180–188 (1998).
  13. M. M. Sigalas, C. M. Soukoulis, R. Biwas, and K. M. Ho, “Effect of the magnetic permeability on photonic band gaps,” Phys. Rev. B 56, 959–962 (1997).
  14. C.-S. Kee, J.-E. Kim, H. Y. Park, S. J. Kim, H. C. Song, Y. S. Kwon, N. H. Myung, S. Y. Shin, and H. Lim, “Essential parameter in the formation of photonic band gaps,” Phys. Rev. E 59, 4695–4698 (1999).
  15. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), Sect. 1.6, pp. 54–74.
  16. E. Özbay and B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett. 69, 743–745 (1996).
  17. T. Aoki, M. W. Takeda, J. W. Haus, Z. Yuan, M. Tani, K. Sakai, N. Kawai, and K. Inoue, “Terahertz time-domain study of a pseudo-simple-cubic photonic lattice,” Phys. Rev. B 64, 045106 (2001).
  18. N. Tsurumachi, S. Yamashita, N. Muroi, T. Fuji, T. Hattori, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys., Part 1 38, 6302–6308 (1999).
  19. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
  20. H. Němec, P. Kužel, F. Garet, and L. Duvillaret, “Time-domain terahertz study of defect formation in one-dimensional photonic crystals,” Appl. Opt. (to be published).
  21. T. Hattori, N. Tsurumachi, and H. Nakatsuka, “Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals,” J. Opt. Soc. Am. B 14, 348–355 (1997).
  22. B. Shi, Z. M. Jiang, X. F. Zhou, and X. Wang, “A two-dimensional nonlinear photonic crystal for strong second harmonic generation,” J. Appl. Phys. 91, 6769–6771 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited