OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 3 — Mar. 1, 2004
  • pp: 632–639

Deep-ultraviolet interband photorefraction in lithium tantalate

Philipp Dittrich, Bozena Koziarska-Glinka, Germano Montemezzani, Peter Günter, Shunji Takekawa, Kenji Kitamura, and Yasunori Furukawa  »View Author Affiliations


JOSA B, Vol. 21, Issue 3, pp. 632-639 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000632


View Full Text Article

Enhanced HTML    Acrobat PDF (420 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Interband photorefraction in near-stoichiometric lithium tantalate is demonstrated and investigated at the deep-ultraviolet (UV) wavelength λUV=257 nm. Formation of two distinct grating components is directly observed in depth-resolved measurements. The diffraction efficiency of a Bragg grating is measured as a function of the UV light intensity, the grating spacing, and the depth of the readout beam beneath the crystal surface. Typical time constants for the interband effects are of the order of a few tens of milliseconds for UV light intensities of approximately 100 mW/cm2, 3 orders of magnitude faster than the time constants reported previously for lithium tantalate.

© 2004 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics

Citation
Philipp Dittrich, Bozena Koziarska-Glinka, Germano Montemezzani, Peter Günter, Shunji Takekawa, Kenji Kitamura, and Yasunori Furukawa, "Deep-ultraviolet interband photorefraction in lithium tantalate," J. Opt. Soc. Am. B 21, 632-639 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-3-632


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Bernasconi, G. Montemezzani, P. Günter, Y. Furukawa, and K. Kitamura, “Stoichiometric LiTaO3 for ultraviolet photorefraction,” Ferroelectrics 223, 373–379 (1999). [CrossRef]
  2. Y. Furukawa, K. Kitamura, K. Niwa, H. Hatano, P. Bernasconi, G. Montemezzani, and P. Günter, “Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range,” Jpn. J. Appl. Phys. 38, 1816–1819 (1999). [CrossRef]
  3. Ch. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium tantalate,” J. Appl. Phys. 93, 3102–3104 (2003). [CrossRef]
  4. M. Jazbinšek, M. Zgonik, S. Takekawa, M. Nakamura, K. Kitamura, and H. Hatano, “Reduced space-charge fields in near-stoichiometric LiTaO3 for blue, violet, and near-ultraviolet light beams,” Appl. Phys. B 75, 891–894 (2002). [CrossRef]
  5. P. Günter and J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vol. 1.
  6. G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects in KNbO3 induced by ultraviolet illumination,” Opt. Lett. 18, 1144–1146 (1993). [CrossRef]
  7. G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994). [CrossRef]
  8. P. Bernasconi, G. Montemezzani, M. Wintermantel, I. Biaggio, and P. Günter, “High-resolution, high-speed photorefractive incoherent-to-coherent optical converter,” Opt. Lett. 24, 199–201 (1999). [CrossRef]
  9. R. Ryf, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “High-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal,” Opt. Lett. 26, 1666–1668 (2001). [CrossRef]
  10. Ph. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, “Fast, reconfigurable light-induced waveguides,” Opt. Lett. 24, 1508–1510 (1999). [CrossRef]
  11. Ph. Dittrich, G. Montemezzani, and P. Günter, “Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings,” Opt. Commun. 214, 363–370 (2002). [CrossRef]
  12. T. Fukuda, S. Matsumura, H. Hirano, and T. Ito, “Growth of LiTaO3 single crystal for saw device applications,” J. Cryst. Growth 46, 179–184 (1979). [CrossRef]
  13. N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992). [CrossRef]
  14. K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116, 327–332 (1992). [CrossRef]
  15. Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197, 889–895 (1999). [CrossRef]
  16. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41, L465–L467 (2002). [CrossRef]
  17. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194–196 (2003). [CrossRef] [PubMed]
  18. R. Ryf, “Optical parallel processing based on the photorefractive effect,” Ph.D. thesis (Swiss Federal Institute of Technology, Zürich, Switzerland, 2000), available at http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13546.
  19. D. R. Linde, Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1992–1993).
  20. E. Krätzig and R. Orlowski, “LiTaO3 as holographic storage material,” Appl. Phys. 15, 133–139 (1978). [CrossRef]
  21. P. Günter, ed., Nonlinear Optical Effects and Materials, Vol. 72 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000). [CrossRef]
  22. P. Bernasconi, G. Montemezzani, and P. Günter, “Off-Bragg-angle light diffraction and structure of dynamic interband photorefractive gratings,” Appl. Phys. B 68, 833–842 (1999). [CrossRef]
  23. M. Carrascosa, F. Agulló-López, G. Montemezzani, and P. Günter, “Photorefractive gratings generated by band-gap excitation: application to KNbO3,” Appl. Phys. B 72, 697–700 (2001). [CrossRef]
  24. G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997). [CrossRef]
  25. B. Luther-Davies, P. H. Davies, V. M. Cound, and K. G. Hulme, “The signs of the electro-optic coefficients for lithium tantalate,” J. Phys. C 3, L106–L107 (1970). [CrossRef]
  26. J. Xu, G. Zhang, F. Li, X. Zhang, Q. Sun, S. Liu, F. Song, Y. Kong, X. Chen, H. Qiao, J. Yao, and Z. Lijuan, “Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals,” Opt. Lett. 25, 129–131 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited