OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 3 — Mar. 1, 2004
  • pp: 655–663

Canonical vortex dipole dynamics

Filippus S. Roux  »View Author Affiliations

JOSA B, Vol. 21, Issue 3, pp. 655-663 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (327 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A dipole of optical vortices propagating in a Gaussian beam can produce a variety of possible trajectories. Equations are provided for the trajectories of vortices launched as a canonical dipole from arbitrary locations in a Gaussian beam. These equations are used to compute the trajectories for two examples, which are compared with numerical simulations. The critical parameter values that would produce annihilations and revivals are computed as a function of the propagation distance. This provides a method to identify different types of vortex dipole trajectory.

© 2004 Optical Society of America

OCIS Codes
(350.5030) Other areas of optics : Phase
(350.5500) Other areas of optics : Propagation

Filippus S. Roux, "Canonical vortex dipole dynamics," J. Opt. Soc. Am. B 21, 655-663 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974). [CrossRef]
  2. F. S. Roux, “Branch-point diffractive optics,” J. Opt. Soc. Am. A 11, 2236–2243 (1994). [CrossRef]
  3. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef] [PubMed]
  4. C. T. Law, X. Zhang, and G. A. Swartzlander, Jr., “Waveguiding properties of optical vortex solitons,” Opt. Lett. 25, 55–57 (2000). [CrossRef]
  5. I. Freund, N. Shvartsman, and V. Freilikher, “Optical dislocation networks in highly random media,” Opt. Commun. 101, 247–264 (1993). [CrossRef]
  6. I. Freund, “Optical vortices in Gaussian random wave fields: statistical probability densities,” J. Opt. Soc. Am. A 11, 1644–1652 (1994). [CrossRef]
  7. V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).
  8. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992). [CrossRef] [PubMed]
  9. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73–87 (1993). [CrossRef]
  10. I. Freund, “Saddle point wave fields,” Opt. Commun. 163, 230–242 (1999). [CrossRef]
  11. F. S. Roux, “Paraxial modal analysis technique for optical vortex trajectories,” J. Opt. Soc. Am. B 20, 1575–1580 (2003). [CrossRef]
  12. G. Molina-Terriza, L. Torner, E. M. Wright, J. J. García-Ripoll, and V. M. Pérez-García, “Vortex revivals with trapped light,” Opt. Lett. 26, 1601–1603 (2001). [CrossRef]
  13. D. Rozas, C. T. Law, and G. A. Swartzlander, Jr., “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B 14, 3054–3065 (1997). [CrossRef]
  14. L.-C. Crasovan, G. Molina-Terriza, J. P. Torres, L. Torner, V. M. Pérez-García, and D. Mihalache, “Globally linked vortex clusters in trapped wave fields,” Phys. Rev. E 66, 036612 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited